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Ion stopping in dense plasmas: A basic physics approach
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Abstract

We survey quite extensively the present research status of ion-stopping in dense plasmas of potential importance for initial confinement fusion
(ICF) driven by intense and heavy ion beams, and also for warm dense matter (WDM). First, we put emphasis on every possible mechanism involved
in the shaping of the ion projectile effective charge, while losing energy in a target plasma with classical ions and partially degenerate electrons.

Then, we switch to ion stopping by target bound electrons, taking detailed account of mean excitation energies. Free electron stopping has
already been given a lot of attention in former works [C. Deutsch et al., Recent Res. Devel. Plasma 1 (2000) 1e23; Open Plasma Phys. J. 3 (2010)
88e115]. Then, we extend the usual standard stopping model (SSM) framework to nonlinear stopping including a treatment of the Z3 Barkas effect
and a confronting comparison of Bloch and Bohr Coulomb logarithms.

Finally, we document low velocity ion slowing down (LVISD) in single ion plasmas as well as in binary ionic mixtures (BIM), in connection
with specific ICF fuels.
Copyright © 2016 Science and Technology Information Center, China Academy of Engineering Physics. Production and hosting by Elsevier B.V.
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General considerations

Non-relativistic stopping of point like charges in a dense
electron fluid has provided us with a fundamentally robust as
well as highly versatile paradigm elaborated through a die-
lectic formulation. So, it thus appears possible to envision now
a higher level of complexity in our model approach. The
conceptual framework previously developed could also allow
for a quantitative treatment of additional basic features of ion-
plasma interaction. Those include in-flight balance of the
projectile effective charge ZeffðVpÞ, stopping by electrons
bound in the target, or the finite extension (non-punctuality) of
the projectile ion electron distribution. The corresponding and
suitably extended stopping theory could then be expected to be
of quantitative accuracy in modeling the penetration of multi-

charged and non-relativistic ions in a small spherical pellet
containing a thermonuclear deuterium þ tritium (DT) fuel.

Through the remaining electrons bound to the target ions
are now directly taking part in the stopping process of the
incoming projectile.

These contentions may be given an immediate content by
focusing our attention on a high temperature target. Then, the
ion projectile-target electron coupling may be considered in
the well-known Coulomb logarithm approximation. An
obvious extension of the previous standard stopping model
(SSM), may thus be written as
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Vthe ¼ electron thermal velocity
r ¼ target density (g/cm3)
N0 ¼ Avogadro number
I ¼ mean excitation energy of target bound electrons

withLB ¼
2meV

2
p

I
andLF ¼

2meV
2
p

Zup

: ð2Þ

For instance, at ne z 1023 cm�3 and 100 eV one has
up z 2 � 1016/s, Zupz10 eV, lD z 2 � 10�8 cm, nel

3
Dz1.

In Eq. (1), ZT denotes the target ions atomic number, Z their
ionicity and AT, the corresponding atomic mass.

The first term on the right hand side (r.h.s) of Eq. (1) ex-
tends straightforwardly to electrons bound to partially ionized
ions in plasma target, the usual Bethe expression, valid for an
isolated ion. This pinpoints an obvious concern about the
adaptability of the mean excitation potential I to plasma sur-
roundings. Even more significant is the novel and conspicuous
ZeffðVÞ behavior in a hot plasma target especially at low ZT.
The enhanced projectile ionization in plasma (EPIP) cannot be
extrapolated from the usual trends displayed by cold target
homologues. It deserves specific developments considered at
first, in the sequel.

The stopping expression (1) has been essentially introduced
for illustrating a few specific behaviours of projectile ion
stopping in a hot plasma medium. Nonetheless, it retains full
validity in a high temperature and weakly coupled plasma
target as long as the target ions concept remains operationally
meaningfull, i.e. as long as its average extension is smaller
than the plasma electron screening length lD, i.e.

a0
ZT

� 743T1=2
e ½eV�

n
1=2
e ½cm�3�

: ð3Þ

When this is not the case, the difference between bound and
free target electrons trends become rather blurred. Then, the
atomic orbitals are likely to get delocalized around several
ions. So, in the weakly coupled regime to which we restrict
most of our present attention, the residual and direct ioneion
contribution in the r.h.s of Eq. (1) plays only a minor role
(smaller than 5% in most situations of practical interest).

1. Projectile effective charge ZeffðVpÞ in a plasma target

We recall the standard Betz expression for the projectile ion
effective charge flowing in a neutral and cold gas target, which
reads as [4].

Zeff

�
Vp

�¼ Z
�
1� 1:034� �� �Vp

�
2:19� 108 ½cm=s��Z�0:688

��
ð4Þ

in terms of the projectile atomic number Z and its instanta-
neous velocity Vp.

1.1. Hindered recombination

The projectile charge state, in a cold target, gets fixed
through a balance between collisional electron losses and
bound electron capture of the target atoms. Direct trapping of
free electrons is much more problematic to achieve because
the excess binding energy has to be evacuated through one of
the three processes: (a) radiative recombination, (b) three-body
recombination, or (c) dielectronic recombination. Therefore,
one should expect different charge states of ions when they
pass through plasma or cold targets, except at very high kinetic
energy, where bound electron capture is also reduced due to
momentum mismatch [5].

In contrast to atomic processes in ordinary plasmas, we
emphasize here two specific features: (a) anisotropy of the
electron velocity distribution in the ions rest frame, and (b)
projectile collisions with target plasma ions are significant.

The dynamical distribution of projectile charge states
through target is thus obtained with the coupled equation:

dPj

dt
¼�Pj

�
a

j
R þ a

j
I

�þPjþ1a
jþ1
R þPj�1a

j�1
I ð5Þ

where Pj ¼ fraction of projectiles in charge state j;aj
R,

a
j
I ¼ total rate coefficients of recombination and ionization for

state charge j.
Given t-dependent outputs rely on charge state, Vp and target

parameters. So, the corresponding t-dependent average charge
state may be introduced in a standard stopping calculation.

Stopping due to free electrons is derived classically in high
temperature plasmas. At each step, energy and velocity data
are updated to advance the projectile, up to the following one.

In doing so, temperature effects have been investigated at
length (Nardi-Zinamon [6]). Below a 200 eV electron target
temperature, ionization of a single electron is the dominant
process, mostly for light elements.

Nonetheless, multiple ionization can show up strongly and
become the dominant effect especially for heavier projectiles
and higher temperatures.

Moreover, kinematic constraints restrict 3-body recombi-
nation relative to the radiative one, in particular for highly
charged and fast ions. In some cases, a significant dielectronic
recombination can outnumber radiative recombination by far.

Finally, the projectile charge state dynamics gets mostly
monitored through a balance at equilibrium between colli-
sional ionization and radiative recombination.

At first sight, one seems to recover a statement for coronal
equilibrium. However, the restricted electron distribution, in
projectile frame, demands that excitation and recombination
are performed by same electrons, although with standard
Maxwell electrons, excitation arises from the high energy tail
of the distribution, while recombination is due to the low
velocity part of the bulk.

Typical atomic rates are given on Fig. 1 for ion Clqþ at
1.5 MeV/u.
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Outputs of Eq. (5) for ion projectile energy 46 MeV/amu
(cf 9 GeV Au ions) are given in Fig. 2(a) (electron-ion exci-
tation) and Fig. 2(b) (ioneion excitation) for a ZT ¼ 10 ion in
target. Such fast ions experience a nearly fully stripped charge
state in every situation. Despite that the equilibrium charge is
pretty close to the electron-ion case, thus fulfilling Bohr cri-
terion. The time span for the stripping of the first electron is
very short, and thus an even decreased initial stripping time
does not matter very much. In order to provide a better un-
derstanding of the necessary equilibration time, we list in
Table 1 the equilibration distance for a constant velocity ion in
units of the cold range for the ions in Fig. 2(b).

The delay distances increases swiftly with projectile Z. For
Au ions, it already amounts to a remarkable one-sixth of the
total range.

Fig. 2 demonstrates that impinging projectiles are practi-
cally fully stripped at the target entrance. The calculations
reported here refer to an electron density ne ~ 6 � 1023 cm�3

i.e. fully ionized aluminum close to solid density.
The stopping rate is roughly proportional to the electron

density. Then, once the effective charge state is obtained, it
will persist up to near the end of range. Indeed, estimations
due to Nardi and Zinamon [6] (Fig. 3) yield a practically
constant Zeff, far above cold target counterparts. However, both
results converge at highest velocities.

Such an impressive plasma increase of Zeff arises from the
hindered free electrons-ion projectile recombination, as
compared to the much more favorable one-electron capture
from bound electrons which accounts for a three orders of
magnitude reduction.

As a result any surviving bound state in target is likely to
overwhelm the recombination processes. This picture (Bell
[7]) highlights the fact that the target ions with a smaller
ionization degree and located close to the projectile trajectory
should dominate recombination. Thus, the superposition of

Fig. 1. Ionization and one electron capture rates versus the projectile charge

state for Clqþ at 1.5 MeV/u in gas and plasma target. Reproduced from M.

Chabot, G. Maynard et al., Phys. Rev. E 51, 3504 (1995) with the permission

of AIP Publishing.

Fig. 2. Time-dependent charge state for several ions with (a) electron colli-

sions and (b) ion collisions for a target corresponding to fully stripped

aluminum at solid density. Reproduced from D.S. Bailey, Y.T. Lee and R.

More, J. Phys. (Paris) C8, 149 (1980) with the permission of EDP Sciences.

Table 1

Equilibration distance (in units of cold range). Calculated

with the electron contribution to stripping (Fig. 2(a))

only. When one includes the ion contributions, it reduces

substantially.

Ion type Equilibration distance

Gold ~0.16

Silver ~0.1

Copper ~0.025

Calcium ~0.01

Silicon ~0.005
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accurate stopping estimates with a specific ZeffðVpÞ in plasmas
produces an enhanced range shortening.

1.2. Basic mechanisms

Total rates aj
R and aj

I appearing in Eq. (5) refer to sums over
individual loss and capture rate processes

P
i

ai with [8]

ai

�
Vp

�¼ Z dVfi
�
V;Vp

�
si

�		Vp

		�V ð6Þ

taken in a projectile moving frame, in terms of a shifted
Maxwell distribution fi for the plasma particles (mass m,
number density n and temperature T ) with thermal velocity V,

fi
�
V;Vp

�¼ ni



m

2pkBT

�3=2

e
� m

2pkBTðV�VpÞ2 ð7Þ

and adequate cross-sections sið
		Vp

		Þ for the projectile-plasma
particles interaction. n and T designate plasma density and
temperature, respectively.

The actual efficiency of a computer code calculation relies
heavily on the approximate expressions used for sið

		Vp

		Þ. We
detail below a few amongst the most significant. To keep
presentation at a decent complexity level, one restricts first to a
simple Slater model for the screened and hydrogenlike basic
atomic quantities, such as excitation energies and oscillator
strengths in plasma target. Nonetheless, the essential sið

		Vp

		Þ
behaviors featuring ionization and recombination are still
given a proper perspective.

1.2.1. Ionization by plasma particles
First, we consider the one-electron excitation of projectile

ions colliding with target free electrons and ions (denoted by
A) respectively:

Xqþ þ e/Xqþ� þ e0;
Xqþ þApþðEÞ/Xqþ� þApþðE0Þ:

The above two processes are only significant for a deex-
citation time which is long compared to intercollision time.
Similarly, ionization through collisions with target free elec-
trons and ions is given as:

Xqþ þ e/Xðqþ1Þþ þ 2e;
Xqþ þApþ

j /Xðqþ1Þþ þA
ðp�1Þþ
j ;

Xqþ þApþ
j /Xðqþ1Þþ þApþ

j þ e:

They feature the most important contribution to projectile
ionization. aie refers to the electron reaction rate averaged over
electron distribution and aij denotes a similar quantity for the
sum of the following ion processes (see Eq. (6)). Autoionization
matters when the projectile ion is doubly excited, with one
electron ionized and the other one deexciting into a lower level.

One of the simplest and more robust modeling of projectile
ionization by electrons and ions in the target is the well-known
binary encounter model (BEM) introduced in a classical
framework by Gryzinski [9]. According to this model, the
cross-section for removing an electron in the n shell projectile
ion cloud, by target ion impact is given as:

sBEM ¼
X
n

Nnsn ¼
X
n

Nnp



ZTe

2

Un

�2

G



Vp

Vn

�
: ð8Þ

Here, Nn is the number of electrons in the nth shell, Un is
their binding energy, and Vn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Un=m

p
their orbital velocity.

G is derived through the matching Vp x Vn for optimal
ionization. It reads as:

GðVÞ ¼ a3=2

V2
�


aþ 2

3
ð1þ bÞlnð2:7þVÞ � ð1� bÞ

h
1� bð1þV2Þi� ;

for V >0:206;

GðVÞ ¼ 4V4
�
15; for V <0:206;

ð9Þ

where a ¼ V2/(1 þ V2), b ¼ 1/[4V(1 þ V)].
According to its velocity Vp, the ion projectile is pene-

trating more or less deeply into a target atom or ion. Following

Bell [7], one can approximate Z as the charge within a sphere

of radius bn ¼
ffiffiffiffiffiffiffiffiffiffiffi
sn=p

p
.

aBEM ¼ VpnsBEM denotes Coulomb ionization rate. The
upper dashed line in Fig. 4 shows the rate coefficient for the
case of an iodine beam with Vp ¼ 1.5ac and a ¼ 1

137:036, fine
structure constant in a hydrogen plasma with temperature
T ¼ 10 eV and ion density ni ¼ 1017 cm�3. The relative
fraction of bound electrons in such a plasma is no larger than
2 � 10�6.

The ionization edge (lower dashed curve in Fig. 4) docu-
ments a significant difference between ionization processes
arising from target ions or target electrons.

Electrons such as Vr < Vn do not have enough kinetic en-
ergy to ionize an nth shell bound electron. So, according to
Lotz [10], ionization through free electron collisions features
the cross section:

Fig. 3. The charge state Zeff of a Xenon ion as a function of its energy as

slowed in a fully ionized Carbon target. Reproduced from E. Nardi and Z.

Zinamon, Phys. Rev. Lett. 49, 1251 (1982) with the permission of AIP

Publishing.
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se ¼
X
n

Nnsn ¼ 4�10�14
�ðcm$eVÞ2��X

n

ln
�

Er

Un

�
ErUn

qðEr�UnÞ

ð10Þ
with the step function qðxÞ ¼ ðjxj þ xÞ=2.

The relative energy between plasma electron and projectile
ion is approximated by Er ¼ ðm=2ÞV2

r xðm=2ÞðV2
p þ V2

theÞ,
where Vthe is the thermal velocity of plasma electrons. The rate
is aexVrnese. The edge at I

24þ to I25þ in Fig. 4 pertains to the
transition from the N shell to the M shell; the electrons do not
have enough energy for M-shell ionization.

1.2.2. Radiative electron capture and three-body
recombination

Radiative recombination:

Xqþ þ e/Xðq�1Þþ þ hv

has to be taken into account for highly ionized targets, and
aREC is the corresponding reaction rate averaged over free-
electron distribution.

Radiative electron capture (REC) is explained by the
electronic transition probability A(n0 / n) between major
shells n0 / n for the projectile (charge state Z ) with energy
E0
n � En ¼ Zu. In the quasiclassical approximation (Zel'do-

vich and Raizer [11]),

Aðn0/nÞf
�
Z2

n2
� Z2

n02

�2					 1n3 � 1

n03

					 1�
1
n2
� 1

n02
�: ð11Þ

The free-bound transition in the REC process can be
derived from Eq. (11) through n0 ≡ ik, where k is the inverse
velocity v of the photoelectron in ac units.

Aðn0/nÞdkfZ4

n3
1


1

n2
þ 1

k2

� dk

k3

f
Z4

n3
1


1

n2
þV2

�VdV :

ð12Þ

A dk is proportional to the rate of REC into the nth pro-
jectile shell ðsnvÞd3v ¼ ðsnvÞ4pv2dv.

One thus gets [12]:

sn ¼ A
V0

V

hv0
me

2
V2
r

g

n3
ð13Þ

where:

A¼ 2:1� 10�22 2
4

33=2
he2

m2
ec

3

�
cm2

�
;

hv¼ 1

2
meV

2
r ¼

hv0

n2
; hv0 ¼ Z2 ½Ry�;

g is the free-bound Gaunt factor, gz1.
The total rate sREC ¼ VrnesREC is then determined by a

sum from the ground state ng (Nng electrons) up to large
quantum numbers. In the hydrogenlike approximation

aREC ¼
 
1�Nng

2n2g

!
ang þ

X∞
n¼ngþ1

an: ð14Þ

The quantity aREC shows up in Fig. 4 as a solid line.
At high density the probability for a simultaneous collision

of the projectile ion with two electrons increases. One of these
electrons is then captured by the projectile, while the other
carries away the excess energy. The 3-body process thus reads
as

a3BR¼25p2e10

m5

Z3ne

V9
r

¼2:92�10�31Z3ne
Vr

�
cm3

s

�
;

ð15Þ

contrasted to radiative electron capture (Vr in ac, ne in cm�3):

aREC

a3BR

z1:6� 1017
Z4

V3
r
gne

Z3ne
V9
r
ne

¼ 1:6� 1017
ZV6

r

ne
: ð16Þ

Regarding to laboratory plasmas, radiative electron capture
remains many orders of magnitude larger than three-body
recombination. For 1.5 MeV/u ion projectiles (Vr ¼ 7:75 ac)
the two rates are equivalent when the density is close to solid-
state one (Fig. 5).

1.2.3. Capture of bound target electrons
In partially ionized targets, a bound electron can jump from

a target ion to the projectile (charge transfer (CT)). Oppen-
heimer and Brinckmann and Kramers [13] evaluated the cross
section (OBK theory) for this process in first Born approxi-
mation for the Coulomb potential �e2/r and hydrogenlike
wave functions (Laguerre polynomials). Using the cross sec-
tion averaged over all initial (l, m) states and summing over all
final (l, m) states,

Fig. 4. Rates of electron capture and loss for a 1.5 MeV/u iodine beam in a

10 eV hydrogen plasma with ne ¼ 1017 cm�3. The intersection between

capture and loss is close to the equilibrium charge Zeq(Vp) at constant velocity

(arrow). Atomic shells corresponding to charge states are given at the top.

Reproduced from Th. Peter and J. Meyer-Ter-Vehn, Phys. Rev. A 43, 2015

(1992) with the permission of AIP Publishing.
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sCT ¼ 4:1� 104
X
ni

X
nf

Niaeik�

�
Ze2
�2
E
5=2
i E

3=2
f E4

kh
E2
k þ 2Ek

�
Ei þEf

�þ �Ei �Ef

�2i5 ð17Þ

where Ei and Ef are the binding energies of the electron >0 in
initial and final states, respectively, Z is the charge state of the
projectile Ek ¼ mV2

p=2, and Ni the number of electrons in the
shell of the target. aeik features a reduction factor (in the usual
OBK theory aeik ¼ 1). Generally 0.1 ( aeik ( 0.4.

Fig. 4 adds to all the other processes also the charge-
transfer-rate coefficient in the 10-eV plasma that stems from
the small part (2 � 10�6) of bound electrons. For comparison
Fig. 5 also exhibits rate coefficients in a cold hydrogen gas of
the same density 1017 cm�3. The total loss rate in both cases
does not differ much from each other, but capture drops in the
plasma case by about three orders of magnitude.

At large projectile velocities, one gets

aCT

aREC

z109
Z2E

5=2
i

E
3=2

f

V11
p

Z4

V3
p n

3
f

y109
E
5=2
i Z

V8
pZT

ð18Þ

with Ei in Ry and Vp in ac. In cold plasmas with many bound
electrons OBK rate ranks many orders of magnitude above
radiative recombination.

1.3. Master equation

It looks now appropriate to systematize the overall effect of
every basic mechanism on the inflight ion projectile charge
state. During its penetration into a target, this charge state
continuously fluctuates through gain and loss of electrons. It
appears then convenient to focus attention towards the popu-
lation Pn of a given excited state n of the ion projectile.
Recalling that on a spherical electron shell n, there are 2n
available locations, one can establish at once a masterlike

relationship for the Pn evolution in terms of loss and gain
reaction rates as [14].

dPn

dt
¼�Pn

"
lðn;nÞ þ

X
ksn

�
2k2 �Pk

�
lðn;kÞ

#

þ ð2n2 �PnÞ
�
gðn;nÞ þP

ksn

Pkgðk;nÞ
#
;

ð19Þ

which obviously extends Eq. (5) to arbitrary excited state n
with every former basic mechanism included, dielectric
recombination excluded.

When k s n, l(n, k) ¼ g(n, k) represents the rate coefficient
for one electron transfer from level n to level k, provided there
is one electron in level n and one free place available in level
k; g(n,n) and l(n,n) denote rate coefficients for recombination
and ionization, respectively. l and g are computed owing to
electron and ion ionization and excitation, spontaneous decay,
boundebound and radiative recombination. Eq. (19) has to be
changed somewhat to include dielectronic recombination and
autoionization process.

1.4. Dielectric recombination

In view of its rather involved behaviour, we postponed up to
here a thorough presentation of the dielectric recombination
(DR) effect on the projectile charge state evolution.

1.4.1. Basic mechanism
Dielectronic recombination:

Xqþ þ e/
�
Xðq�1Þþ���/Xðq�1Þþ þ hv

is a two-step process in which a free electron with kinetic
energy Ek is captured by an ion X of charge Z and the excess
energy is transferred to another electron already bound in
shell i≡ðniliÞ, which will be excited to shell j≡ðnjljÞ. This
writes as

XðZ; iÞ þ eðEk; l±1Þ/Aa
X��ðZ � 1; jnlÞ: ð20Þ

The free electron will be captured into a highly excited
level n[ 1, from where it will get autoionized by process Eq.
(20) running from right to left (Auger effect with rate Aa). X**
is then deexcited via a stabilizing radiative decay (with rate Ar)
i.e.

X��ðZ � 1; jnlÞ/Ar
X�ðZ � 1; inlÞ þ Zu ð21Þ

The photon carries the energy Zu ¼ Ej � Ei out. With its
longer lifetime the higher excited electron remains after the
i/ j transition in the (n, l ) level, and it finally cascades down
to ground state. Here only the decay to state i is considered [8].

The basic DR features which includes resonance condition
and fluorescence yield are pictured on Table 2.

Energy conservation demands Ek � Enl ¼ Ej � Ei, where Ek

is the kinetic energy of the free electron, Ei the binding energy

Fig. 5. Rates for 1.5 MeV/u iodine in cold hydrogen gas with ne ¼ 1017 cm�3.

Here the equilibrium charge is about 21 (arrow), thus considerably less than in

the plasma case (Fig. 4). Reproduced from Th. Peter and J. Meyer-Ter-Vehn,

Phys. Rev. A 43, 2015 (1992) with the permission of AIP Publishing.
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of the initially bound electron (possibly in an inner shell), and
Ej and Enl the energies of the excited states. We restrict to an
ion at rest in target plasma. The number of DR processes per
unit volume and time is nðX��ÞAr=nðXÞne.

Detailed balance to the total loss of doubly excited ions
nðX��ÞðAa þ ArÞ is given by the loss nSahaðX��ÞAa in a Saha
equilibrium

nðX��Þ ¼ Aa

Ar þAa

nSahaðX��Þ; ð22Þ

where nSaha is given by

nSahaðX��Þ
nðXÞne ¼ gðZ � 1; jnl±1Þ

2gðZ; iÞ
h3

ð2pmkBTÞ3=2
e�Ek=kBT : ð23Þ

Here, gðZ; iÞ and gðZ � 1; jnl±1Þ are statistical weights of
the states XðZ; iÞ and X��ðZ � 1; jnl±1Þ, so that

gðZ; iÞ≡


gi
Ni

�

gj
Nj

�
; gðZ; jÞ≡



gi

Ni þ 1

�

gj

Nj þ 1

�
;

gðZ � 1; jnlÞ≡



gi
Ni � 1

�

gj

Nj þ 1

�
2ð2lþ 1Þ

ð24Þ

where

gi ¼ 2ð2liÞ; gj ¼ 2
�
2lj þ 1

�
:

Ni and Nj are occupation numbers of shells in i and j of the ion
X(Z, i). Hence the DR rate specified by the quantum numbers
(i, j, nl ) appears as:

aDRði; j;nlÞ

¼ Arðj/jÞAaðjnl/iEkl±1Þ
Arðj/jÞ þAaðjnl/iEkl±1Þ

�gðZ � 1; jnl±1Þ
2gðZ; iÞ

� h3ne

ð2pmkBTÞ3=2
e�ðEj�EiþEnlÞ=kBT ;

ð25Þ

with ArAa=ðAr þ AaÞ, branching ratio or fluorescence yield.
The total rate of DR [15].

aDR ¼
X
i;j;nl

aDRði; j;nlÞ ð26Þ

consists of a large sum over electronic states where (n, l )
denotes the states into which the plasma electron is captured
with a simultaneous excitation of a projectile electron from
state i to state j. Ek ¼ mv2/2 is the initial kinetic energy of the
recombining electron in the rest frame of the projectile. In the
beam-plasma case, the projectile sees a Maxwellian electron
distribution (6) shifted by the projectile velocity Vp. The cor-
responding rate

aDR

�
Vp

�¼ Z d3vf
�
v;Vp

�
vsDRðvÞ; ð27Þ

is easily obtained from the normal plasma rate aDR (Vp ¼ 0) if
we take into account that the cross section aDR(Vp ¼ 0) from
the work of Jacobs et al. [16]. Then one obtains

aDR

�
Vp

�¼ 
4pa2BEH

kBT

�3=2X
i;j;nl

gðj;nlÞ
2gðiÞ � AaAr

Aa þAr þAv
a

Fðs; tÞ;

ð28Þ
with aB ¼ Z2=me2 and EH ¼ e2=2aB; gðj; nlÞ and gðiÞ are
statistical weights. The l dependence of the Gaunt factor gl in
Aa is normalized to

P
gl ¼ 0:2. As a novel feature, auto-

ionization of valence electrons (rate Av
a) in addition to auto-

ionization of the captured electron (rate Aa) is found to be
important in certain open-shell ions and has been included in
Eq. (28).

The function

Fðs; tÞ ¼ �exp�� ðs� tÞ2�� exp
�� ðsþ tÞ2���4st ð29Þ

in Eq. (28) results from the integral (27) with

s2 ¼ Ej �Ei þEnl

kBT
and t2 ¼ mV2

p

2kBT
:

In the limit Vp ¼ 0, the pure plasma result with the
Boltzmann factor F ¼ exp½�ðEj � Ei þ EnlÞkBT� is recovered

Table 2

The dielectronic recombination mechanism.
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from Eq. (28) and the rate is largest for high temperatures with
Ej � Eiy3

2kBT . However, for fast ions in plasma of low tem-
perature (Vp [ Vth), the resonance condition is best fulfilled
for

mV2
p

2
yEj �Ei þEnl[kBTðsyt[1Þ;

the beam then probes individual resonance states as a function
of beam velocity with a width kBT.

1.4.2. Balance equation
In order to include dielectronic recombination (DR), and

the inverse autoionization process (AP) in the master expres-
sion (19), we reconsider [17].

eþA
�
Pi;Pj;Pk

� 1
/
)
2

A
�
Pi�1;Pjþ1;Pkþ1

� ð30Þ

where AðPi;Pj;PkÞ refers to a projectile with Pi;Pj;Pk elec-
trons in levels i, j and k respectively (k, j > i). Reaction 1
pertains to DR and 2 to AP. In view of expression (19) one has
for the rates t1 and t2:

t1 ¼ Pi

�
2j2 �Pj

��
2k2 �Pk

�
dði; j;kÞ ð31Þ

and

t2 ¼ PjPk

�
2i2 �Pi

�
aði; j;kÞ ð32Þ

with d(i, j, k) and a(i, j, k) the rate coefficients for one electron
or one free place in each level. t2 implies that Pj and Pk

behave as independent quantities, which is roughly true in a
high density plasma where numerous collisions can occur, but
not in the low density case where the deexcitation time is now
smaller than the collision time. In that case the approximation
of independent populations leads to a very low and unphysical
t2 as already mentioned in Ref. [18].

Adapting the DR expressions given in Section 1.5.1, to the
present formulation we explain t1 through

dði; j;kÞ ¼ 15:28� 1016EkuFijFð
ffiffiffiffi
u

p Þ
2k22j2kðDEÞ2lg

�
2k

ffiffiffiffiffi
DE
Ek

q � Xk�1

l¼0

1

2lþ 1
ð33Þ

with DE ¼ Ej � Ei (Ry), Fij is the dipole oscillator strength,
u ¼ Ek þ Ej � Ei (Ry) and l the azimuthal quantum number of
level k. The function F is given by

FðgÞ ¼ T

n
lg
h
1þ exp

�
a� gþV2

p

T

�i
� lg

h
1þ exp

�
a� g�V2

p

T

�io
4gVp

with T denoting the temperature (Ry) and a the degeneracy of
plasma free electrons (Vp in a.u.).

t2 is derived from micro-reversibility with the l dependence
carefully included. When we use micro-reversibility we can
start either from dði; j; kÞ and calculate aði; j; kÞ, or start from

dlði; j; kÞ at a given quantum number l which leads to alði; j; kÞ
and then sum over the number of electrons with quantum
number l in level k, noted Pðk; lÞ, to finally reach aði; j; kÞ. The
two calculations yield the same result only for a random dis-
tribution Pðk; lÞ ¼ Pk½ð2lþ 1Þ=2k2�. In that case one gets

aði; j;kÞ ¼ 3:819� 1016EkuFij

2j2kðDEÞ2lg
�
2k

ffiffiffiffiffi
DE
Ek

q �Xk�1

l¼0

1

2lþ 1
: ð34Þ

But if we consider a low density plasma with a collision
time much longer than the deexcitation time, then one has to
put Pðk; lÞ ¼ Pk and the rate coefficient gets multiplied by (1/
q) with

q¼
Xk�1

l¼0

1

2lþ 1

,"
k2
Xk�1

l¼0

1

ð2lþ 1Þ2
#

We thus make the approximation to use Eq. (34) for a
random population of electrons that do not come from DR
whereas the coefficient a/q provides the AP rate for electrons
that result only from DR.

It must be emphasized here that DR and AP are two in-
dependent processes. In a high density plasma AP is the
dominant effect because the excited states are populated
mostly by collisions. In this case the overall effect of DR and
AP is a loss of electrons.

1.5. Balance steady state

The above detailed atomic processes can suitably be given a
perspective with the study of realistic ion-plasma interactions.

1.5.1. General
Projectile ionization stages get constantly modified through

ion-electron and ioneion collisions in the target. Most sig-
nificant ones include collisions with free plasma particles,
while autoionization also affects the projectile effective
charge. Other mechanisms of noteworthy to be mentioned also
include boundebound charge transfer from plasma bound
electrons, radiative transfer, while non 2-body recombinations
(dielectronic and 3-body) provide only negligible contribution
even at high densities and are not considered any further. In-
ternal projectile charge state is also submitted to excitations
caused by target particles and also to spontaneous projectiles
radiative decay. Low density targets feature projectiles mostly
in the ground state, which restricts considerations to total
cross-sections.

This point of view is illustrated on Fig. 6 with atomic
collision rates for 4 MeV/u Iqþ ions in helium plasma with
n ¼ 4 � 1017 cm�3 and T ¼ 4.4 eV. These parameters give
rise to a plasma ionization degree z ¼ 0.5.

From Figs. 1 and 6 the equilibrium charge state Zeq is ob-
tained when ionization rate matches the recombination one.
Ionization rates arise through ion collisions (Fig. 6) while
recombination rate arises from charge transfer yielding
Zeq ¼ 31. Looking now at the rate teq for this q ¼ Zeq we can
have an estimate of the necessary time for the ion to reach its
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equilibrium charge, keeping its velocity constant, by defining
the equilibrium time teq ¼ 1/teq.

Atomic rates (Fig. 6) are given as frequencies for pro-
jectiles gains and losses of electrons, thus establishing a rate
for a relative charge variation 1/q. In the same vein, one gets a
stopping rate Rstp for a relative energy variation of DE/E ¼ 1/q
and Rstp ¼ qSV/E which is also reported in Fig. 6 in terms of
the stopping power S ¼ �dE/dx.

Aside from density dependence, every mechanism involved
in the evolution of the ion projectile charge while crossing in
plasma is given on Fig. 6.

As an example, we now consider an iodine ion with a given
ionization state q. For instance, let us take an initial value
q ¼ 24. Fig. 6 tells us that this ion should be ionized by
collisions with plasma ions until reaching Zeq ¼ 31 with a time
teq ¼ 5 ns.

Then, the atomic rate is 10 times above the stopping rate,
and the q increases from 24 up to 31 preventing the projectile
from slowing down, since the target length required from
reaching equilibrium amounts to 13.8 at the given density.

Removing charge transfer, the projectile ion charge in-
creases up to q ¼ 38 through ion collisions when ionization
rate balances the stopping rate. The given ionization stage
defines the dynamical charge Zdy.

Energy changes more swiftly than the charge state during
the slowing down process, when q � Zdy. Then, the projectile
charge stays unchanged until energy decays sufficiently with a
recombination rate >Rstp.

These considerations thus allow us to foresee from Fig. 6
the evolution of the projectile charge state in terms of target
parameters through the behaviour of most significant atomic
rates.

Overall low-density plasma trends then feature:

1. All of the rates are almost directly proportional to the
density.

2. Electron collision ionizations do not play a significant
role.

3. Free electron capture can only appear for highly colli-
sional plasma.

4. Ion-ion collision rates nearly scale as Z2 for not too high
atomic number. The stopping rates experience little vari-
ations with density due to plasmon energy in the Bethe
formula. Ion-ion collisions are insensitive to plasma
ionization.

5. Charge transfer decreases with plasma ionization so does
the total recombination rate.

At first sight, modifying Z=ZT has not much bearing on
curve slopes. A trend can be predicted by moving up or down
(in Fig. 6) the three curves of ion collision ionization rate,
stopping rate and bound-bound charge transfer rate. The
plasma atomic number has a large influence on ionization and
charge transfer probability, while plasma ionization modifies
the stopping rate and charge transfer. In an energetic ion-
plasma encounter ion-ion collisions are more relevant than
the electron-ion ones, at variance with collisions between
plasma particles, which rules out collisional radiative models
in the present situation.

1.5.2. Temperature effects
An obvious temperature signature stems from the quadra-

ture of electron-ion collisions cross-section over the plasma
electron velocity distribution in the moving projectile frame.
As in the stopping expression, temperature leaves an imme-
diate imprint for Vp � Vthe. However, electron ionization stays
below ion ionization and free electron recombination remains
under the stopping rate. So, the temperature does not directly
influence the projectile charge dynamics. Nonetheless, charge
transfer relies on plasma excitation and ionization Z=ZT.
Ion-ion ionization hardly changes with increasing Z=ZT, the
main effect of which is to lower the charge transfer rate,
yielding (Fig. 6) enhanced Zeq and bigger teq. Zeq is only ob-
tained at a large enough plasma linear density. When Z=ZT
keeps rising up, charge transfer rate falls below the stopping
rate and the projectile charge now relies on initial q value.
When q < Zdy, the projectile charge attains q ¼ Zdy with
decreasing energy, while if q > Zdy energy decays even faster
with nearly unmodified projectile charge state. Z induced
recombination arises from enhanced bound-bound charge
transfer monitored by the strongly bound electrons. In
hydrogen target, recombination is usually proportional to
bound electron density while a large ionization will allow
dielectronic and radiation processes to occur. In other targets,
significant reduction of recombination only occurs for K and L
ionized electrons and also at a large temperature. The influ-
ence on the enhanced projectile ionization in plasma (EPIP)
reaches its top value in fully ionized targets with a small ZT
and shows us as negligible at a high ZT [20].

Fig. 6. Reaction rates for electron capture (solid line) and loss (dashed lines)

together with stopping rate (dotted curve) of 4 MeV/u Iqþ in half-ionized

helium plasma at T ¼ 4.4 eV and n ¼ 4 � 1017 cm�3 as a function of pro-

jectile charge state q. [G. Maynard et al., Nuo. Cim. 106 A, 1825 (1993)] with

kind permission of Societa Italiana di Fisica, copyright 2016.
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1.5.3. Dynamical effect
As seen previously, a dynamical imprint appears for Rstp

bigger than any atomic state. Fig. 6 demonstrates it appearing at
reduced recombination with q � Zdy. At not too big ZT, the
ionization rate is proportional to ZT and the charge transfer rises
even swifter with ZT, with a nearly ZT-independent stopping rate.
Dynamical effect is then triggered by small atomic numbers. In
heavy targets, the projectile charge remains close to Zeq. Cold
hydrogen targets document nonequilibrium charges while strong
dynamical effects demand full target ionization. Moreover, in a
fully ionized He target, a 4 MeV/u iodine beam with an initial
charge below Zdy ¼ 58, will rapidly attain it. As ion projectile
slows down, ionization turns smaller than stopping.

As a result, ionization remains constant until the radiative
or dielectronic recombination rate is above the stopping rate,
at a very low projectile velocity.

In a mundane situation featuring large target ionization and
an initial ion projectile charge state <Zeq, the projectile will be
keeping a nearly constant charge ~Zdy on most of its trajectory
for E ¼ E(0), the initial energy.

The slowing down process is initiated with a charge <Zeq
while it turns >Zeq further on. This fixed charge process
largely influences the energy deposition profile. Although
nearly flat, in cold targets, the swift heavy-ion energy profile
becomes proton-like, featuring a Bragg peak near the end of
range as it is the case in strongly ionized plasmas targets. In
the latter case, stopping slightly decreases with density
(plasmon energy in Bethe expression) so that solid targets
exhibit less dynamical effects than plasma ones.

Dielectronic and autoionization (DA) processes account for
electron losses except for a resonance at q ~ 38. DA docu-
ments autoionization after a dielectronic recombination and
also arises from vacancies out of plasma ion collisions.
Autoionization rate ~z2 (z denoting degree) can rank high in
large Zp targets.

1.5.4. Density effects
Density highlights a rather tricky case featuring pretty large

uncertainties due to the use of partial cross-sections. We shall
mainly focus on the density impact on ion projectile excita-
tion. Every atomic rate is proportional to target density at the
exclusion of radiative decay and autoionization. In the pres-
ence of an increasing density, the incoming ion has no time to
relax to ground state between two collisions in a row. Then, a
few collisions later, it can pile up enough excitation energy
available for Auger emission at surface exit. The main density
effects are: excitation collision effect, partial recombination
effect and vacancy production effect. Obviously, excitation
arises because excited states are easier to ionize than ground
state. With the excitation cross-section � Z2

p such an effect
appears first in a heavy material. Excitation collisions are
documented by the BetzeGrodzins model [19] for a projectile
endowed with a number of weakly excited electrons [19]. A
small enhancement will secure ionization with a large Auger
emission taking place at surface exit.

Recombining electrons on high lying levels may trigger
ionization in lieu of transfer. Partial recombination on excited

levels rises with decreasing z. The recombination reduction via
partial charge transfer remains small for heavy targets and
features a dominant density effect at low Zp. For instance, in a
hydrogen target with n ¼ 1020 cm�3, the given diminution
rises Zeq from 24 to 29 for a 1 MeV/u iodine beam. Low Zp
targets favor the Bohr-Lindhard model highlighting a large
density enhancement for the projectile in plasma and some
Auger electrons at target exit.

On the other hand, low Zp targets stress a density depen-
dence through vacancies in ion projectile inner shell. Then,
electrons are allowed to recombine on high-lying levels but are
not allowed to do so in a vacancies produced by ion collisions.
The charge then increases with density in relation to excitation
rates higher than radiative decay rates and also the vacancies
number increases with density. This effect seems to be the
largest for carbon targets.

Finally, it should be noted that systematic discrepancy be-
tween q exit and q outside prevents a straightforward experi-
mental vindication of density effect on heavy ion charge state
within target. Nonetheless, recent stopping power measured
data demonstrate a 15% increase for the heavy ion effective
charge in solid when contrasted to the equivalent cold gas.

1.6. Inflight effective charge (hydrogen target)

Now we can integrate all those atomic rates into a complete
calculation of the ion projectile velocity-dependent effective
charge ZeffðVpÞ. We focus attention on INþ in view of its high
resonant contribution to dielectronic recombination. So, it can
provide a convincing benchmark for optimizing the impact of
this effect on inflight projectile charge state.

1.6.1. Solution of the rate equation neglecting dielectronic
recombination

The total rates for ionization and recombination without
dielectronic recombination thus read as:

aðZ/Z þ 1Þ ¼ sBEMðZÞVpni þ seðZÞVrne
aðZ/Z � 1Þ ¼ sCTðZÞVpni þ sREC þ s3BRðZÞVrne ;

ð35Þ

which allow to solve the rate equations for 1.5 MeV/u iodine
ions incident on 10 eV hydrogen with a density of 1017 cm�3.
Fig. 7, displays the charge-state evolution starting from
Zeff ¼ 0. For Vp ¼ 10ac we find Eeq,hot [ Eeq,cold. Only at
very high velocities is Zeq,hot � Zeq,cold because according to
Eq. (18), the cross section for charge transfer drops faster at
high velocity than the cross section for high radiative capture.

Fig. 7 also reveals that the equilibrium areal density
R
nedl

(integrated from Z ¼ 0 to Z ¼ Zeq � 1) increases by two orders
of magnitude. Thus, in order to observe the different behaviors
of the effective charges in plasma and cold gas in a laboratory
experiment, it matters to have a plasma with high enough areal
density.

1.6.2. Dielectronic recombination included [21]
Again we consider the interaction of iodine ion at 1.5 MeV/

u with a fully ionized hydrogen plasma at T ¼ 10 eV and
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ne ¼ 1017 cm�3. Now the evaluation of the inflight projectile
ion charge state may include simultaneously a DR contribution
and the stopping effect, as well (cf. Fig. 8). When the energy
loss is not taken into account, ZeffðVpÞ is strongly dependent
on the DR rate. This behavior is well documented on Fig. 8
and Table 2 by the constant Vp charge states initialized at
Zeff ¼ 20. Asymptotically, i.e. near equilibrium, they climb up
to 29 and 41 respectively, with and without DR included. Now,
comparing distances for a complete stop, with and without DR
included, one gets a ratio R ¼ 1.17 for initial charge state 20
and R ¼ 1.16 for 32, respectively when stopping is neglected.
It has to be appreciated that those R values result only in a
16% DR modification for the complete stopping process. This
is 6 times smaller than the ratio 2 of stopping powers per-
taining to equilibrium charges ZeqðVpÞ at constant velocity.
When stopping is included, the ion projectile is brought to rest
at the end of 8 m penetration in the given target plasma. On the
other hand, ZeqðVpÞ is obtained only after 40-m penetration
depth, when DR is not taken into account. Fig. 8 also displays
corresponding evolutions for an initial projectile charge of 32,
in between the above two equilibrium values (29 and 41). The

main conclusion to be drawn from this detailed investigation is
that the realistic interplay of dielectronic recombination and
stopping power, likely to be met in an experimental situation,
yields a dynamical picture with a rather modest DR impact on
the projectile ion effective charge. This statement may be
taken as a robust one because we have essentially considered
Iqþ projectile which features one of the highest resonance
capabilities to accommodate the DR process [22].

1.7. Inflight effective charge (non-hydrogenic target)

A hydrogen plasma target provides easily a high density of
free electrons. However, in order to make contact with realistic
stopping plasmas of interest for inertial confinement fusion
(ICF) through intense ion beams, one has to consider also high
Z and low Z targets of nonhydrogenic materials such as Au,
Pb, C, Al, etc.

The corresponding dense and partially ionized plasmas al-
ways retain a large amount of bound electrons which
contribute significantly to the stopping and also to charge
exchange induced electron transfer between incoming partially
ionized projectile and target ions in the vicinity of its path.
Figs. 9 and 10 display reaction rates weighted by density of
excited target bound states for the interaction of Cu9þ ions
with a hot (Te ¼ 250 eV) Al plasma with a free electron
density ne ¼ 1018 cm�3. Fig. 9 features variations in terms of
the projectile charge q at 0.781 MeV/u kinetic energy. In
Fig. 10 the rate variations are given in terms of projectile Cu7þ

energy [20].
According to the discussion in Section 1.5 dielectronic

recombination may be given for its reaction rate a constant
average value aDR ¼ 10�11 cm�3$s�1.

This value has been identified as an upper bound (Nardi and
Zinamon [6]). Chen's investigations [21] show that aDR re-
mains dependent on target temperature.

The reported variations remain moderate, in particular for a
projectile ionization smaller than 10. In order to estimate the
final output of those projectile charge variations, we used a
parameter study demonstrating that increasing aDR by an order
of magnitude or reducing it by the same amount does not
change at all the results displayed in Figs. 9 and 10 as well as
in experimental cases considered below. In a partially ionized
plasma target, the projectile charge state is mostly reached
with collisions and charge transfer to target ions. Other free-
electron contributions such as dielectronic recombination or
three-body recombination are kept three orders of magnitude
below the charge transfer once there is 0.5% of bound elec-
trons in the target.

Charge transfer

Xqþ þApþ/Xðq�1Þþ þAðpþ1Þþ

with the rate aqq�1, features the most important recombination
process in neutral gases, solids, or partially ionized plasmas.
Nonetheless, in a fully ionized medium, this contribution
nearly vanishes. Such a behavior accounts for a drastic
reduction of recombination in plasma. Then the result for the

Fig. 7. Time evolution of the effective charge of an iodine beam with 1.5 MeV/

u in hydrogen neglecting stopping-power effects. The beam ions have charge

zero initially. The dash-dotted line gives the semiempirical value of Betz [Rev.

Mod. Phys. 44, 465 (1972)] for cold gas.

Fig. 8. Variations of projectile ion Iqþ (initial energy 1.5 MeV/u) charge states

in a hydrogen plasma as a function of penetration depth. Reproduced from G.

Maynard and C. Deutsch, Phys. Scr. 48, 471 (1993) with the permission of IOP

Publishing.
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projectile charge is expected to keep same plateau value over
most of its velocity range.

Decay by spontaneous emission

XqðEÞ/XqþðE0Þ þ hv

appears non-negligible for highly excited projectiles, while
three-body recombination is ruled out because at high pro-
jectile velocity and average electron density, conservation of
momentum cancels three-body reactions.

In particular, momenta of the two recombining electrons
have to compensate each other at the ion location. Such an
occurrence decreases very rapidly with increasing projectile
velocity (Bailey, Lee and More) [5] (Section 1.2).

As shown above, charge transfer features the most efficient
capture process, so a higher projectile charge is expected in a
fully ionized plasma than in the equivalent cold gas. Also, for
a partially ionized plasma retaining a large number of bound
electrons, the projectile equilibrium charge, reached when
electron losses balance gains, is seen at higher projectile ve-
locity that in totally stripped plasmas.

In Fig. 9, we picture the above considered reaction rates
versus charge state q for the 50-MeV Cu ions interacting with
a strongly ionized Al plasma where Te ¼ 250 eV and
ne ¼ 1018 cm�3. This target is assumed in a coronal regime
with Alnþ ions and n ¼ 9 � 12.

Excepted the q-independent dielectronic recombination, all
other mechanisms are strongly affected by the varying pro-
jectile charge state. On the other hand, when that projectile
charge state (see Fig. 10) is kept fixed, the corresponding rates
remain nearly constant in terms of incoming kinetic energy.

A lot of efforts has been devoted to asserting the actual
significance and quantitative relevance of dielectronic
recombination on the projectile ion inflight charge state
ZeffðVpÞ, in a strongly ionized target plasma. As a result, the
initial picture set forward in Section 1.2 highlighting higher
charge states than in equivalent cold gas emerges strengthened
by this thorough examination. Hindered recombination actu-
ally appears as the trade mark of plasma conditioned projectile
effective charge.

Those considerations allow to extract easily the most sig-
nificant pieces of information encapsulated in Fig. 9. This is
performed on Fig. 11. We again consider a Cu9þ ion projectile
with 50 MeV total kinetic energy, interacting with strongly
ionized plasma targets with ion density ¼ 1018 cm�3. We
restrict to ionizing collisions with target ions and free electrons,
as well as to radiative electron capture and 3-body recombi-
nation. Projectile excitation is neglected in those simulations.

Fully ionized targets (Fig. 11(a) and (b)) at high tempera-
ture exhibit very similar trends, although the first is aluminum
and the second carbon. Then, the absence of charge transfer

Fig. 9. Reaction rates weighted by density of excited target bound states,

versus charge state q, encountered in the interaction of 50 MeV Cu ions with

Al plasmas (Te ¼ 250 eV, ne ¼ 1018 cm�3; curves labelling: 1: ne aREC; 2:

nð12þÞaqq�1; 3: ne aDR; 4: nð12þÞ aij; 5: nð9þÞaij; 6: nð9þÞaqq�1; 7: ne aie;

8: nð10þÞaij; 9: nð10þÞaqq�1; 10: nð11þÞaqq�1; 11: nð11þÞaii. Reproduced

from C. Couillaud et al., Phys. Rev. E 49, 1545 (1994) with the permission of

AIP Publishing.

Fig. 10. Reaction rates in the interaction of the 50 MeV Cu7þ ions with Al

plasmas of Fig. 9 in terms of projectile energy. Other unspecified quantities are

as in Fig. 9. Reproduced from C. Couillaud et al., Phys. Rev. E 49, 1545 (1994)

with the permission of AIP Publishing.
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between target ions and projectile can be observed at top ef-
ficiency. However, lowering by a factor of 3 the Al plasma
temperature, makes to appear a dominant contribution of
recombination through charge transfer. The target ions are
then mostly heliumlike with two bound electrons.

2. Stopping by bound electrons

Now, we switch attention to the first term in the right hand
side under brackets in Eq. (1). It pertains to the stopping
contribution arising from the remaining electrons bound in the
partially ionized plasma target. It thus reads as

�dE

dx
¼ 4p

�
Zeff

�
Vp

�
e2
�2

meV2
p

nT
�
ZT � Z

�
ln



2meVp

I

�
; ð36Þ

in terms of the mean excitation energy

lnðIÞ ¼
P

n fnlnðEnÞP
n fn

; ð37Þ

where fn is the dipole oscillator strength for the nth energy
level En, nT is the ion density in the target. Up to now, most of
measurements of the ion stopping have been restricted to cold
solid or gaseous targets. In order to optimize the efficiency of a
pellet compression, however, an accurate estimation of the
stopping parameters in dense and hot plasmas is required. The
target material is likely to be heated up to temperatures of
50e200 eV, before fuel ignition starts up in a direct drive
approach. Under these conditions, such tamper elements as Pb
will be only partially ionized. Consequently, the stopping by
bound electrons is no longer negligible and thus, we have to
anticipate an energy range of a given ion beam in a cold matter
and in an equivalent plasma for the same line density nl (l is
the linear projectile range).

The central quantity of present concern is the mean exci-
tation I.

We are thus obviously required to extend to nonhydrogenic
cold targets, the usual knowledge already used for neutral
atoms and hydrogenic ions. Furthermore, we shall compute the
corresponding I in hot and dense plasmas of atomic charge ZT.

Postponing the presentation of low Vp behavior we restrict
presently to the standard Bethe-Bohr-Bloch regime with
2meV

2
p=I � 1, i.e

MV2
p �

M

me

5:15ZT½eV� ;

where ZT now denotes the average nuclear charge in target.
Here, we put the main emphasis on theoretical methods which
are able to deliver accurate mean excitation energies based on
a clear understanding, so that comparison of cold and hot
stopping, respectively, for a given ion beam is easily achieved.

This explains why we pay attention to a variational
approach yielding upper and lower bounds with a narrow gap
in between. Other methods including a cubic spline interpo-
lation, a pseudo-analytic expression for I, and the local plasma
approximation (LPA) are also considered.

They all agree in showing that high-temperature plasmas
(kBT � 10 eV) have significantly smaller mean excitation
energies than their cold target homologue.

2.1. Variational method

2.1.1. Sum rules
Starting with a formal approach initiated by Pekeris [23]

and Dalgarno [24] and subsequently developed by many au-
thors [25], we consider the sum rules (�1 � m � 2):

SðmÞ ¼
X
n

f0nE
m
0n; ð38Þ

LðmÞ ¼
X
n

f0nE
m
0nlnjE0nj; ð39Þ

in terms of optical oscillator strengths (q / 0 limit),

Fig. 11. Reaction rates for 50 MeV Cu ions versus charge state q in the

interaction with a plasma (ion density ¼ 1018 cm�3). (a) Al at 300 eV (fully

ionized), (b) C at 100 eV (fully ionized), and (c) Al at 100 eV.
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f0n ¼ 2E0n

N
〈njXN

i¼1

Zij0〉2½a:u:�; ð40Þ

and excitation energy E0n for transitions {0} / {n} in a given
atom (ion) with N bound electrons, and nuclear charge Z. Eqs.
(38) and (39) interpolate for any m 2 [�1, 2], the usual
physical quantities specified for integer m. For the sake of
simplicity, we restrict our presentation to a one-electron model
so that a given subshell {a} may be indexed either through
classical {n, l} or relativistic {n, l, j} one-electron quantum
numbers. We thus specify Eqs. (38) and (39).

SaðmÞ ¼
X
a0

faa0Eaa0 ; ð41Þ

LaðmÞ ¼
X
a0

faa0E
m

aa0 lnjEaa0 j: ð42Þ

Noticing that an optical transition to an already filled
subshell has to be forbidden, we introduce the more realistic
sums

SPaðmÞ ¼
X
a0

ð1� ha0 Þfaa0Em

aa0 ; ð410Þ

LP
aðmÞ ¼

X
a0

ð1� ha0 Þfaa0Eaa0 lnjEaa0 j; ð420Þ

in terms of ha0 ¼ ga0=da0 , ga0 is the number of electrons {a0}
while da0 , refers to level degeneracy, i.e., 2(2l þ 1) for a ¼ {n,
l} and (2j þ 1) for {n, l, j}. The overall quantities corre-
sponding to Eqs. (38) and (39) thus read:

SPðmÞ ¼
X
a

gaS
P
aðmÞ; ð43Þ

LPðmÞ ¼
X
a

gaL
P
aðmÞ; ð44Þ

with:

SPð2kÞ ¼ Sð2kÞ; k � 1; ð45Þ

SPð2kþ 1Þ<Sð2kþ 1Þ; k � 1: ð46Þ

2.1.2. Upper and lower bounds
We now consider a generalized mean excitation energy

under the form:

ln½IðmÞ� ¼ LPðmÞ
SPðmÞ ¼

1

SPðmÞ
d

dm
SPðmÞ ð47Þ

The physical I is retrieved in the m ¼ 0 limit. Now, we turn
to the variational procedure itself as considered by Shimamura
and Watanabe [26] for an atom in its ground state.

Upper and lower bounds for ln[I(m)] are then deduced from
the basic atomic quantities (in a.u.):

Sað�1Þ ¼ 2

3
〈ajr2ja〉¼ 2

3
r2a; ð48aÞ

Sað0Þ ¼ 1 ; ð48bÞ

Sað1Þ ¼ 4

3
〈aj�P2

�
2
�ja〉¼ 4

3
Ka; ð48cÞ

Sað2Þ ¼ 1

3
〈a
				4pZdðrÞ � 1

r

d2

dr2
½rVðrÞ�

				a〉; ð48dÞ

The operators:

Pa ¼
X
a0<a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ha0

p ja0〉〈a0j
and

D¼ ffiffiffiffiffi
2z

p ¼
ffiffiffi
2

p
ðq,r=rÞ ð49Þ

allow us to rephrase Eqs. (41) and (42) under the form (a0<a):

SaðmÞ ¼ 〈a		DPaðH �EaÞmþ1
PaD

		a〉; ð50Þ

M aðmÞ ¼ 〈a
		DPaðH �EaÞmþ1

lnðH�EaÞPaD
		a〉; ð51Þ

featuring upper and lower bounds straightforwardly deduced
from convexity considerations.

Their obvious numerical interest arises from the sharp max-
min interval, which allows us to well approximate ln(I ) by the
bounds average ln〈I〉 the simplest case of a basis reduced to its
first vector u1. This procedure thus yields

ln

�
SaðmÞ

Saðm� 1Þ
�
� M aðmÞ

SaðmÞ � ln

�
Saðmþ 1Þ
SaðmÞ

�
ð52Þ

2.1.3. Analytic formula
For an ion (atom) in its ground state, Eq. (52) reduces to

ln

�
SPðmÞ

SPðm� 1Þ
�
� LPðmÞ

SPðmÞ � ln

�
SPðmþ 1Þ
SPðmÞ

�
ð53Þ

because there is no superelastic transition. SP(m) fulfills

SPð0Þ ¼ Sð0Þ; SPð1Þ<Sð1Þ; SPð�1Þ<Sð�1Þ: ð54Þ
In the m ¼ 0 limit one gets:

ln

�
Sð0Þ
Sð�1Þ

�
� lnðIÞ � ln

�
Sð1Þ
Sð0Þ

�
: ð55Þ

Taking the bounds average leads to

ln〈I〉¼ 1

2
ln

�
Sð1Þ
Sð�1Þ

�
ð56Þ

which compares very well with the Hartree-Fock-Slater (HFS)
results given by Dehmer, Inokuti and Saxon [27] (DIS).

Estimate (56) is the basis for variational results plotted in
Figs. 4e6 together with the HFS ones. Neglecting correlations
between bound electrons allows us to use (a0 ¼ Bohr radius)

Sð�1Þ ¼ 2me

3Z2
a20〈


r

a0

�2

〉
0

; ð57aÞ
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Sð1Þ ¼ 4

3
K0; ð57bÞ

which, when introduced into Eq. (55) yield the explicit form:

〈I〉¼
ffiffiffiffiffiffiffiffi
2K0

r20

s
½a:u:�; ð58Þ

with r20 ¼ 〈r2〉0.
This novel approximation already provides a very good

estimate for I. The practical interest of Eq. (58) would remain
rather limited if one could only proceed to a sophisticated
evaluation for K0 and r20. Hopefully, these quantities are easily
deduced from electron-ion pseudo-analytic effective in-
teractions which enables us to compute these parameters with
the same accuracy.

As experienced earlier, we find it convenient to explain
these effective interactions in the GSZ form [28]

VðrÞ ¼ �


ZT �N þ 1

r

�
4ðrÞ; ð59aÞ

4ðrÞ ¼ �


N � 1

r

�
UðrÞ; ð59bÞ

UðrÞ ¼ �H�er=d � 1
�þ 1

��1
: ð59cÞ

H and d denote two adjustable parameters fitted on the
lowest bound state energies.

For our present goals, the quantity of interest is the electron
density r(r) fulfilling the Poisson equation,

V24ðrÞ ¼ �4prðrÞ;
with

4pr2
rðrÞ
N

¼ H

d2
rer=d

H
�
er=d þ 1

�� 1

½Hðer=d � 1Þ þ 1�3: ð60Þ

From Eq. (60) one readily obtains

ZR
0

r24pr2rðrÞdr ¼�
ZR
0



r2

d

dr

�

r2
d4

dr

�
dr

¼


r4
d4

dr

�R

0

þ �2r34�R
0
� 6

ZR
0

r24ðrÞdr

through an integration by parts, so (R / ∞),

Nr20 ¼�6

Z∞
0

dr,r24ðrÞ ¼ r2GFðaÞ; a¼ 1� 1=H; ð61Þ

where r2G ¼ 6Nd2=H and

FðaÞ ¼
X∞
n¼0

an

ðnþ 1Þ2

with 0�a � 1.

The average kinetic energy K0 is reached through a con-
strained virial relationship:

2K0y� 〈V〉
N

¼�U

N

�1

N

Z∞
0

�
�


ZT�Nþ1

r

�

N�1

r

�
1

Hðer=d�1Þþ1

�
4pr2rðrÞdr

¼NH

d

�
Z�N



1

6
þ 1

12H

��
:

ð62Þ
Finally, putting Eqs. (61) and (62) into Eq. (57) yields the

Garbet expression [29]

〈I〉2 ¼ N

6d



H

d

�2
�
1� �N

6Z

� �
1þ 1

2H

��
F
�
1� 1

H

� : ð63Þ

If we now specify the above results to the neutral atom limit
(ZT ¼ N ) and recall the empirical estimate

Iy10:32 ½eV�; ð64Þ

one expects a behavior 〈I〉yZT, arising from the GSZ scaling
law [28]

H

d
¼ Zb; b¼ 0:5: ð65Þ
This result is indeed confirmed when the Thomas-Fermi

estimates NK0 � Z
7=3
T and Nr20 � Z

1=2
T are introduced into

Eq. (58). The corresponding 〈I〉 falls within 6% of DIS ones
[27] for ZT � 28 (see Fig. 12). Putting Eq. (65) into Eq. (63)
yields

〈I〉2 ¼ ZTN

6d

�
1� �N

6Z

� �
1þ 1

H

��
F
�
1� 1

H

� ; ð66Þ

with the atomic limit (ZT ¼ N )

〈I〉2 ¼ Z2
T

6d

9þ a

12FðaÞ: ð67Þ

In the TF limit (Z/∞), one has

a¼ 1; FðaÞ ¼ p2

6
;

〈I〉
ZT

¼
ffiffiffiffiffiffiffiffiffiffiffi
5

6p2d

r
;

ð68Þ

which when combined to the most likely estimated
d=a0 � 0:7, provides

〈I〉
ZT

y9:4462
�
eV
� ð69Þ

in fair agreement with Eq. (64). The main interest of Eq. (63)
lies in its flexibility. It applies to any ionicity (see Fig. 13) and
to arbitrarily partially stripped ions in plasmas.
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2.2. Cubic spline method

Here we essentially show how some variational results can
improve a spline interpolation method initially worked out by
Peek et al. [30]. For this purpose, let us reconsider Eq. (47)
with the P superscript deleted, under the form

lnðIÞ ¼ d

dm
ln½SaðmÞ�

			
m¼0

; ð70Þ

which suggests a numerical interpolation by considering real m
values, provided the integer data m ¼ �1, 0, 1 and 2 are
known. Arguing that S(m) diverges logarithmically at m ¼ 2.5,
Dalgarno [24] has considered the formula

SðmÞ ¼ �aþ bmþ cm2 þ dm lnð2:5� mÞ�mSð0Þ;
where a, b, c, d are suitable constants prescribed by specific
constraints. These techniques have been further [31] taken up
by specifying Eq. (46) to a subshell a, with

lnðIaÞ ¼ d

dm
ln½SaðmÞ�

			
m¼0

;

and the interpolation formula

ln

�
SaðmÞ
Sað0Þ

�
¼ m



aþ b

5� 2m
þ c

7� 2m

�
;

where a, b, c are another set of disposable parameters. Setting

TaðmÞ ¼ 1

m
ln

�
SaðmÞ
Sað0Þ

�
;

lnðIaÞ becomes

lnðIaÞ ¼ 3

5
Tað�1Þ þ 3

7
Tað1Þ � 1

35
Tað2Þ:

2.3. Ions in plasma

2.3.1. Average atom model
With the obvious intention of extending the scope of the

above methods to the plasma case, we implement a scheme
proposed by Rozsnayi [32]. It usually leads to results close to
those of the Liberman [33] average atom model.

This is essentially an algorithm delivering electronic levels
and equation of state of atoms embedded in matter with
arbitrary density and temperature.

The self-consistent field treatment starts with the relativistic
Thomas-Fermi-Dirac (TFD) model in the iterative procedure.

The Fermi statistics and the central field approximation are
maintained, giving an average atom representation. It is
generally believed that in the region of high temperature and/
or pressure, the TFD model gives a reasonably accurate
electron potential. This potential, in turn, can be used as a
basis to treat the atom in a more quantum-mechanical way by
solving the single-electron wave equation for the bound states.

The basic assumption is that during an elementary stopping
process, the target ion is nearly instantaneously neutralized by
plasma fluctuations. This hypothesis is particularly relevant to
matter treated by intense ion beams, in view of the relatively
long pulse time (~20 e 30 ns) allowing the target species to be
considered in local thermodynamic equilibrium (LTE) with
comparable electron and ion temperature T and number den-
sity n.

The numerical procedure is initialized by taking each
R0 ¼ ð3=4pnÞ1=3. According to Rozsnayi [32] the HFS
scheme is implemented as follows.

1. Bound electrons are consider independent. They are sup-
posed to be modeled in spherically symmetric and self-
consistent potential VeffðrÞ (see Eq. (73) below), the
same for all electrons. However, exchange and correlation
are still retained in VeffðrÞ. The total electron density:

rðrÞ ¼ rbðrÞ þ rfðrÞ;

fulfills

Fig. 12. Mean excitation energies for neutral species (1 � ZT � 40). Repro-

duced from X. Garbet et al., J. Appl. Phys. 61, 907 (1987) with the permission

of AIP Publishing.

Fig. 13. Mean excitation energies for isolated ion Alnþ according to ionicity.

Reproduced from X. Garbet et al., J. Appl. Phys. 61, 907 (1987) with the

permission of AIP Publishing.
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4p

ZR0

0

dr,r2rðrÞ ¼ ZT; ð71Þ

with rbðrÞ in terms of single-electron eigenquantities
(εi;Ji).

2. The average atom assumption allows us to replace the
various excitation states in target with those of a fictitious
atom with noninteger occupation numbers for excited or-
bitals. VeffðrÞ is taken constant within each subshell.

3. Conceptually and numerically speaking it is most conve-
nient to derive (εi;Ji) from Dirac equation, which proves
especially convenient to tackling the eigenvalue problem
through two coupled first-order equations.

We do not intend to emphasize relativistic and spin effects
of increasing relevance for heavy elements. However, this
could be easily done within the present framework.
The bound electron radial density rbðrÞ

4prbðrÞ ¼
X
nlj

ð2jþ 1Þ
exp
�
b
�
Enlj � m

��þ 1
�
h
A2
nljðrÞ þB2

nljðrÞ
i
;

ð72Þ

with total electron energy

E'nlj ¼ Enlj þVeffðrÞ;

and

VeffðrÞ ¼ VcbðrÞ þVexchðrÞ þVcorðrÞ; ð73Þ
a sum of Coloumb, exchange, and correlation potentials is
readily expressed in terms of radial Dirac wave functions
deduced from

d

dr



A
B

�
¼

0BB@ �K

r

VeffðrÞ�Enlj

cs

�VeffðrÞ�Enlj

cs

K

r

1CCA
A
B

�
; ð74Þ

where K ¼ �sðjþ l=2Þ; c ¼ 137:037 ða:u:Þ; s ¼ ±1.

4. The free electron density is taken to be Thomas-Fermi like
i.e.,

rf ðrÞ ¼
ffiffiffi
2

p

p3=2
T3=2

Z∞
�Veff ðrÞ

KBT

x1=2dx

exp
n
x� ½m�Veff ðrÞ�

KBT

o
þ 1

; ð75Þ

with the boundary condition VeffðR0Þ ¼ 0. Enl is devided
from the Wigner-Seitz condition JðR0Þ ¼ 0.

5. The number Zðn; TÞ of free electrons per nuclei in target
may be initialized with a Thomas-Fermi approximation.

6. It appears convenient to initialize VeffðrÞ with (see
Eq. (59))

V0ðrÞ ¼ ZT � Z

r
UðrÞ ¼ Z

R0

"
R0

r
þ 1

2



r

R0

�2

� 3

2

#
; ð76Þ

a superposition of GSZ (bound) and ion-sphere potential
(free), allowing for a self-consistent resolution of the TF
model. (εi;Ji) are also initialized by their WKB values.

Table 3

Average Al atom in plasma with T ¼ 100 eV (3.657 a.u.) at the three densities

(a) r ¼ 0.1 r0, (b) r ¼ r0, and (c) r ¼ 10r0, with r ¼ 2.699 g$cm�3, solid

density. Occupation numbers (usually noninteger) and eigenvalues are plotted

for the successive (orbitals) subshells (n, l, j ). Variational outputs for Sp(0),

Sp(1), and Sp(2) together with mini-max for Lp(0) and Lp(1) are given, with the

corresponding K0 and 〈r2〉0 required to implement GSZ expression (58).

Chemical potential m, bound electrons number N, and free electron number

ZðN þ Z ¼ ZTÞ are also displayed.

(a) r ¼ 0.1r0, R0 ¼ 6.44 a.u.

Orbitals Electrons occupation

number

Hamiltonian

eigenvalue

1s12 2.000 �69.453 Spð�1Þ ¼ 1:947

2s12 0.391 �12.307 Spð0Þ ¼ 4:056

2p22 0.331 �11.560 Spð1Þ ¼ 2:391� 102

2p32 0.657 �11.528 Spð2Þ ¼ 1:275� 105

3s12 0.042 �3.3995 K0 ¼ 46.81

3p12 0.039 �3.1300 〈r2〉0 ¼ 0:733

3p32 0.078 �3.1209

3d32 0.072 �2.8112

3d52 0.108 �2.8044

4s12 0.021 �0.8836

4p12 0.021 �0.7737

4p32 0.042 �0.7707

4d32 0.040 �0.6494

4d52 0.060 �0.6161

4f72 0.079 �0.5872

4f52 0.058 �0.4926

5s12 0.017 �0.0755

m ¼ �1.751; N ¼ 4.06; Z ¼ 8.94;

14.83 � Lp(0) � 15.08; 2.529 � 103 � Lp(1) � 2.718 � 103

(b) r ¼ r0, R0 ¼ 2.99 a.u.

Orbitals Electrons occupation

number

Hamiltonian

eigenvalue

1s12 2.000 �63.951 Spð�1Þ ¼ 3:004

2s12 0.792 �8.3632 Spð0Þ ¼ 5:777

2p12 0.667 �7.3733 Spð1Þ ¼ 2:515� 102

2p32 1.327 �7.3450 Spð2Þ ¼ 1:342� 105

3s12 0.154 0.7896 K0 ¼ 35.90

3p32 0.290 �0.5509 〈r2〉0 ¼ 0:828

3p12 0.140 �0.4078

3d52 0.407 �0.2823

m ¼ �9.916; N ¼ 5.78; Z ¼ 7.22;

18.29 < Lp(0) < 19.31; 2.589 � 103 � Lp(1) � 2.825 � 103

(c) r ¼ 10r0, R0 ¼ 1.39 a.u.

Orbitals Electrons occupation

number

Hamiltonian

eigenvalue

1s12 2.000 �57.335 Spð�1Þ ¼ 1:139

2s12 1.252 �3.4574 Spð0Þ ¼ 6:528

2p32 2.214 �2.3550 Spð1Þ ¼ 2:507� 102

2p12 1.062 �2.0194 Spð2Þ ¼ 1:272� 105

K0 ¼ 31.86

〈r2〉0 ¼ 0:340

m ¼ �1.565; N ¼ 6.53; Z ¼ 6.47

20.32 � Lp(0) � 22.20; 2.536 � 103 � Lp(1) � 2.814 � 103
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7. Once convergence is reached, these eigenquantities are
self-consistently determined for a given set (n,T ) of
plasma conditions, together with definitive expressions for
Veff ; mðn; TÞ and ne (see Table 3 for illustration).

2.3.2. Mean excitation energies in plasmas
To illustrate the whole procedure, let us compare 〈I〉 in Al

plasma and for an isolated Al3þ ion, respectively, according to
Eq. (56). In the first option, we take KBT ¼ 100 eVand n ¼ 10
solid density, so that (in a.u.)

K0 ¼ 22:42; r20 ¼ 0:493; Z ¼ 3

leads to 〈I〉 ¼ 2:255 slightly overshooting the more accurate
(variational) data 2.16. The corresponding isolated ion results are

K0 ¼ 24:79; r20 ¼ 0:341; 〈I〉¼ 2:49

in lieu of the exact 2.48.
On Figs. 14 and 15, we have also reported data due to the

local plasma approximation (LPA) [34]. The LPA consists of
averaging over density of the inhomogeneous fluid of bound
electrons around a target ion.

Despite its obvious plasma connotation, this method pro-
vides results among the least accurate, according to (g ¼ 2),

lnðIÞ ¼
Z

ln
�
gZupðrÞ

�
rbðrÞdr ð77Þ

with

u2
pðrÞ ¼ 4prbðrÞe2

�
me:

We recall that accuracy of these theoretical results in cold
matter is evaluated with respect to those of DIS [27] which are
ab initio HFS.

The present bleak performances of the LPA even at room
temperature, are not completely unexpected [35] in view of the
basic difficulties encountered when one tries to derive this
scheme from the first principles, i.e, starting with the standard
definition of the oscillator strength in terms of dipole matrix
elements and carrying out a systematic deduction. This point
and many others concerning the LPA have recently been
critically reviewed by Johnson and Inokuti [35].

In this connection, it should be appreciated that our present
results reinforce the paradoxical status of the LPA because it is
supposed to be precisely at its best in yielding accurate I
values. Nonetheless, we have described three other methods
which are easily accurate in cold matter, where contact can be
performed with the most accurate DIS ones [27].

The above atomic methods detailed in Sections 2.1 and 2.2
for isolated species are thus renormalized with plasma effects
according to Section 2.3.

Their respective ln I (I in a.u.) are contrasted in Figs. 7 and
8 for Al at various densities and Fe. All the results agree in
showing

IðZT;n;T >10 ½eV�Þ< I
�
ZT;Zðn;TÞ

� ð78Þ

Up to a temperature of 10 eV, it is acceptable to deduce I
from a Saha determination of ionization Z in target. However,
at a higher temperature, occupation of higher subshells has to
be taken into account, and their contribution to stopping is
larger than that arising from more tightly bound electrons in

Fig. 14. Mean excitation energies for Al in a hot plasma at (a) solid density, (b)

0.1 � solid density, (c) 10 � solid density. Reproduced from X. Garbet et al.,

J. Appl. Phys. 61, 907 (1987) with the permission of AIP Publishing.
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lower subshells. The spline interpolation adequately improved
with variational inputs seems to provide fair data. As stated,
the LPA produces the least accurate results.

At this juncture, it has to be appreciated that the accuracy of
the variational results is not restricted by the numerical pro-
cedure. For instance, the mesh used for computing the basis
wave functions may be taken as densely as required. The
variational accuracy is mostly limited by neglecting of any
electron exchange between neighboring ions. As shown in
Tables 3 and 4 variational results can be given with controlled
accuracy, when compared to those of other methods [36].
Finally, we display in Table 4 corresponding variational results
for an average Al (Tables 3 and 4) atom in dense hot matter.
As stressed above, the excited subshells have a noninteger
occupation number.

The present calculations clearly exhibit the temperature
limit above which the isolated ion approximation implemented
with Saha distribution of excited states, has to be questioned.
Through the AAM the plasma effects result in a larger pop-
ulation of excited bound orbitals, which respond more effi-
ciently to the projectile field than corresponding ground state
[37,38].

The results add a novel and significant contribution to the
shortening of the projectile range in target, in addition to those
due to partial degeneracy of the electron fluid and enhanced
projectile charge in plasma [37] already considered previously.

3. Nonlinear stopping

Up to now, we restricted our investigations to the standard
stopping model (SSM) framework and to a first term
� Z2

effðVpÞ in the interaction expansion. Nonetheless, for
completeness and above all to secure the quantitative perti-
nence of the above results, it appears compulsory to pay
detailed attention to the higher and so-called nonlinear cor-
rections to the usual Bohr-Bethe quadratic dependence in the
projectile charge of the stopping power expression. A lot of
attention has already been given to those terms for the usual
case of a gaseous target [39]. Our main concern here is to
adapt these results to a noneutral target by revisiting the cor-
responding formalisms.

In order to focus attention on the stopping mechanisms, we
take it here for granted that the ion projectile keeps a fixed
inflight charge Zp. We therefore pay a first attention to the so-
called Barkas contribution [39] Z3

p .
It is also the first nonlinear stopping contribution which

now depends on the Zp sign.

3.1. Barkas effect

3.1.1. Classical formulation
The theoretical framework considered up to now is essen-

tially based on the first Born approximation in which the
stopping power for a particle of velocity Vp energy, and charge
number Zp ≪ Vp/V0, where V0 ¼ e2=Z is proportional to
ðZpeÞ2. This section extends the stopping-power theory to the
term yðZpeÞ2 in an impulse approximation, i.e., the classical
equivalent of the second Born approximation. It accounts for
the observed differences between the electromagnetic stopping
power of a particle and its antiparticle, and also for differences
between the stopping powers of a particles and protons which,
so far, have remained unexplained.

Consider first an electron bound harmonically with a fre-
quency u to the nucleus of the atom in a target with atoms of
atomic number ZT and density nT. A heavy projectile of charge
Zpe approaches the oscillator with non relativistic velocity Vp

at an impact parameter b relative to atom nucleus. f(t,b) de-
notes the classically force on the electron set up by the pro-
jectile at time t. The displacement of the electron at time t
from its equilibrium position (at the origin with zero velocity
at t ¼ �∞), zðtÞ, is then obtained through z€þ u2z ¼ f

me
,

which we write in the form [39].

zðtÞ ¼ Re

24 i

meu

Z t

�∞

f ðt0;bÞe�iuðt�t0Þdt0

35: ð79Þ

At time t, the electron gained the energy 1
2með _z2 þ u2z2Þ.

Thanks to Eq. (79), this energy is given by

Fig. 15. Mean excitation energies in Fe plasma at solid density, as a function of

temperature. Reproduced from X. Garbet et al., J. Appl. Phys. 61, 907 (1987)

with the permission of AIP Publishing.

Table 4

ln(I ) (I in a.u.) for isolated ion Alnþ. Maximum discrepancy for the variational

results are given within parentheses.

Ionicity McGuire [36] GSZ [Eq. (58)] Variational method Mehlhorn [34]

0 1.51 1.51 1.61 (7.0%) 1.52

1 1.77 1.91 1.87 (4.5%) 1.65

2 2.11 2.13 2.16 (4.2%) 1.85

3 2.44 2.39 2.47 (3.5%) 2.10

4 2.48 2.53 2.59 (3.0%) 2.15

5 2.66 2.58 2.72 (2.7%) 2.20

6 2.82 2.75 2.87 (3.2%) 2.28

7 2.97 2.88 3.04 (3.2%) 2.37

8 2.16 3.04 3.24 (3.0%) 2.50

9 3.40 3.26 3.51 (2.9%) 2.71

10 3.82 3.68 3.15

11 4.47 4.10
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Wrðt;bÞ ¼ 1

2m

						
Z t

�∞

fðt0;bÞe�iut0dt0j2: ð80Þ

Thus the energy lost by the incident particle per unit dis-
tance dR, i.e., the stopping power of the fraction Fu of target
electrons bound with a frequency u, appears as:

�dE

dx

�
u

¼ 2pnTZTFu

24Zau
0

bdbWSð∞;bÞ

þ
Z∞
au

bdbWrð∞;bÞ
35; ð81Þ

where Wr is the energy transferred to resonance excitations of
the electrons and WS is the energy transferred in close single
collisions. au advocates a lower limit of the impact parameter
with the electrons seen as harmonically bound. For b < au the
electrons are treated as unbound. If the incident particle moves
along the line x ¼ �b in the þy direction, the force (see
Fig. 16) on the electron can be written with Eq. (79) as:

f ðt;bÞ ¼ �Zpe
2

½bþ zxðtÞ�bi� �Vpt� zyðtÞ
�bj�½bþ zxðtÞ�2 þ

�
Vpt� zyðtÞ

�2�3=2 ð82Þ

where bi and bj are unit vectors in the þx and þy directions. For
small electron displacements such that zðtÞ=ðb2 þ V2

P t
2Þ1=2≪1

and retaining first-order terms, one gets:

f ðt;bÞ ¼ f 0ðt;bÞ þDf ðt;bÞ ð83Þ
where f 0ðt; bÞ denotes the standard expression:

f 0ðt;bÞ ¼ �Zpe
2 bbi�Vptbjh
b2 þ �Vpt

�2i3=2: ð84Þ

The new term Df is explained as:

Df ðt;bÞ ¼� Zpe
2h

b2 þ �Vpt
�2i5=2nh�� 2b2 þV2

p t
2
�
zxðtÞ

þ 3bVptzyðtÞ
ibiþ h3bVptzyðtÞ

þ
�
b2 � 2V2

p t
2
�
zyðtÞ

ibjo:
ð85Þ

Solving Eq. (83) iteratively and, replacing f by f0 when
calculating zðtÞ from Eq. (79), we insert the Fourier trans-
forms f 0u and Dfu into Wr(∞,b), yielding Eq. (80) the
stopping-power correction due to Df, i.e

D



�dE

dx

�
u

¼ 2pnTZTFu

me

Z∞
au

b dbðRef 0u$ReDfu

þ Imf 0u$ImDfuÞ: ð86Þ
The dipole approximation implied in Eq. (86) limits its

validity range to distances from nucleus outside the atomic

volume so that the electrons responding with frequency u

remain bound. This restricts au to values larger than the
respective shell radius. For smaller impact parameters the
momentum transfer becomes so large that the electrons turn
quasi-free and their contribution to the Z3

p effect becomes
small, because the cross section for Rutherford scattering with
free electrons is exactly proportional to Z2

p . Such a division
into glancing collisions and close collisions with large mo-
mentum transfers is in agreement with Bohr's early semi-
classical treatment of stopping [40].

Equation (86) then reads as:

D



�dE

dx

�
u

¼ 4pnTZTuFu

m2
eV

5
p

�
Zpe

2
�3
I



uau
Vp

�
; ð87Þ

where

IðxÞ≡
Z∞
x

du

u2

8<:�K1ðuÞ
Z∞
�∞

dv
cos uv

ð1þ v2Þ5=2
��
v2 � 2

�
F1ðu;vÞ

� 3vF2ðu;vÞ
�þK0ðuÞ

Z∞
�∞

dv
sin uv

ð1þ v2Þ5=2
�
3vF1ðu;vÞ

� �1� 2v2
�
F� 2ðu; vÞ�

9=;;

ð88Þ
The functions F1 and F2 are defined by

F1ðu;vÞ≡
Zv

�∞

dy
sin½uðv� yÞ��
1þ y2

�3=2 ;

F2ðu;vÞ≡
Zv

�∞

dy
ysin½uðv� yÞ��
1þ y2

�3=2 :

Fig. 16. Schematic of the ion projectile with an extended charge distribution

interacting with electrons bound to the partially stripped target. The impact

parameter b is assumed larger than the average projectile diameter.
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Kv is the modified Bessel function of the second kind of order
v. For x ¼ uau=Vp≪1, the function IðxÞ can be approached by
IðxÞz� 3

2p lnðxÞ þ A, where A z �2.4 is a constant. In this
case the function IðxÞ vanishes approximately as

IðxÞz



4p
x2

�
e�2x.

The fraction FðuÞ of oscillators responding in the fre-
quency range between u and uþ du is given by gðuÞdu,
where gðuÞ is the differential oscillator strength normalized
such that

R∞
0 gðuÞdu ¼ 1.

As long as the above result is restricted to large b values
[1, the corresponding quantum-mechanical derivation
would yield to an identical expression (88). Then, the corre-
sponding stopping power correction reads as

D



� dEp

dx

�
¼ 4pnpZT

m2
eV

5
p

�
Zpe

2
�3Z∞

0

dugðuÞu I



uau
Vp

�
: ð89Þ

3.1.2. Estimation of equation (88)
The intricate expression (88) may be drastically simplified

[41] by invoking an instructive connection with the quadrupole
contribution to the electron broadening of neutral lines in
Stark broadening theory [43].

Quadratures very similar to

Mm;vðz; z0Þ ¼
Zþ∞

�∞

dx
eizx

ð1þ x2Þm=2
Zx

�∞

dy
e�iz0x

ð1þ y2Þv=2

have already been reduced to a sum of products of modified
Bessel function.

Actually, all the quadratures contributing to IðxÞ may be
derived from Mm;vðz; z0Þ and its derivatives with respect to the
arguments.

This allows one, after lengthy manipulations, to reduce Eq.
(88) to the much simpler expression

IðxÞ
2p

¼ xK1ðxÞ½K0ðxÞI0ðxÞ �K1ðxÞI1ðxÞ�

þ
Z∞
�∞

duK1ð2uÞK1ðuÞI1ðuÞ; ð90Þ

with Iv as the modified Bessel function of the 1st kind.

	 For x � 1, we extend a previous limit with

IðxÞ≊� 3p

2
lnðxÞ � 2:417� 2px2

�½lnðxÞ�2 þ 1:14lnðxÞ
� 0:33

�
;

ð91Þ	 For large arguments, we get a decay

IðxÞ≊1

4



p

x

�3=2

e2xx/∞; ð92Þ

differing slightly from the Ashley et al. [42,43] expression.

Recalling that gðuÞ is related to the electron distribution
rðrÞ in a target atom (ion) by

ZTgðuÞ ¼
Z

d3rrðrÞd½u0ðrÞ �u� ;

u0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8prðrÞe2

m

s
≡

ffiffiffiffiffiffiffiffi
2up

p ð93Þ

we are now entitled to estimate the Z3
p stopping power

correction

Z3
pJd ¼

4pnTZT

m2V5
p

�
Zpe

2
�3 Z∞

�∞

duðuÞI


uau
Vp

�
ð94Þ

to the enlarged stopping expression

dE

dx
¼ 2Z2

p Id þ Z3
pJd ; ð95Þ

where the customary lowest-order energy loss (Bohr-Bethe-
Bloch) is expressed as twice a long-distance contribution.

Toward that goal we use again the Thomas-Fermi like-
GSZ-expression

4pr2
rðrÞ
N

¼ H

d2
rer=d

H
�
er=d þ 1

�� 1

½Hðer=d � 1Þ þ 1�3 ; ð60Þ

Upon introducing a dimensionless ratio V ¼ Vp=
ffiffiffiffiffi
ZT

p
V0

with V0 ¼ e2=Z, the Z2
p -term becomes

Id ¼ C

b2

Z∞
0

d3rrðrÞxK1ðxÞK0ðxÞ; ð96Þ

with

x¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zu0ðrÞ
mer2

s
; C ¼ 4pN 0e

4

mec2
¼ 0:307

�
MeV$cm2$g�1

�
;

N 0 being the Avogadro number.
The relative magnitude of the Z3

p (Barkas) term is measured
finally by:

FðVÞ ¼ ffiffiffiffiffi
ZT

p
V2 Jd

2Id
; ð97Þ

displayed in Table 5 for four typical atoms and small and large
V values respectively. FðVÞ is typically 15 up to 30 percent of
the Z2

p -term. Jd is obviously a non-negligible quantity. It ap-
pears convenient to put Eq. (94) under the form:

Jd ¼ C

b2

2ffiffiffiffiffi
ZT

p 1

V

Z
d3rrðrÞIðxÞx2: ð940Þ

In contradiction to the Lenz-Jensen expression which does
not discriminate the atomic structure, GSZ is more selective
because it is built upon accurate experimental data for lowest
bound states.
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3.2. Bloch term

Within the SSM framework outlined in Section 2.2, it is
now straight-forward to complete the stopping expression with
Barkas � Z3

p and Bloch terms as well. In cold gas, those latter
are no longer negligible when the Born parameter
ZpV0=ðV2

p þ V2
theÞ1=2 is comparable to 1. V0 ¼ 1 in atomic

units. Vth is the thermal velocity of plasma electrons. Retaining
also the very small target-ion contribution, one thus gets a
more accurate stopping expression

�dE

dx
¼ 4pN0e

4rZ2
p

ATmeV2
p

ZT$

"
Z

ZT

LF
0 þ

ZT � Z

ZT

LB
0 þ Zp

V0

Vp

þ Z2
p

V2
0

V2
p

f
�
V2
p

�
þme

AT

ZTLp

#
; ð98Þ

with

LF
0 ¼ ln

 
2meV

2
p

Zup

!
� 〈V2

the〉
V2
p

� 〈V4
the〉

2V4
p

ð99Þ

and up ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2ne=me

p
, the plasma frequency of the target

free electrons.
〈V2

the〉 is the usual average in terms of Fermi functions.
f ðV2

p Þ accounts for the standard Bloch correction, which
bridges a gap between Bohr semi-classical expression and
Bethe quantum-mechanical one. The last term (me/Ar) ZTLp
accounts for inelastic encounters between ion projectiles and
target ions. It is nonnegligible only for Vp � Vthe, or at a very
high plasma temperature.

The third termwithin brackets in the right-hand side (r.h.s.) of
Eq. (98) is the Barkas contribution [44]� Z3

p . It pertains only to

bound electrons and thus vanishes identically in a fully ionized
target. In this case, the Born parameter becomes ZpV0/Vp.

For Vp [ Vthe, L
F
0/LF and LB0/LB (cf. Eq. (2)). The

relative importance of the four last terms in the rhs of Eq. (98)
is evaluated in Table 6 for a target electron density of subse-
quent experimental interest. Obviously, the Barkas and Bloch
corrections to the main Bethe contribution remain rather weak
for all values of the Born parameter ZpV0=Vp.

In the sequel Eq. (98) will be often referred to in the ca-
nonical form

�dE

dx
¼ k

Z2
p

V2
p

h
L0 þ ZpL1 þ f

�
Z2
p

�i
: ð100Þ

Bohr, Bethe and Bloch stopping formulae differ essentially
from each other in their respective implementation of a clas-
sical description combined with the Born approximation.
Before attempting a quantitative comparison [39] we consider
anew the projectile high velocity expression

�dE

dx
¼ Z2

pu
2
pe

2

V2
p

L ð101Þ

where u2
p ¼ 4pNee

2=me is the target bulk plasma frequency,
with L intrinsically given by Eq. (101) within the selected
slowing down expression. To render more transparent the
given comparison we consider a fiducial “atom” built on a
single harmonically bound electron. It is then easily seen that
I ¼ Zu, with u, electron circular frequency.

So,

LBethe ¼ ln



2mv2

Zu

�
� ln

�
1� b2

�� b2; ð102aÞ

LBloch ¼ ln



2mv2

Zu

�
� 1

2
ln
�
1� b2

�� b2

2
þjð1Þ

�Re

�
j



1þ iZpa

b

��
;

ð102bÞ

LBohr ¼ ln



1:123mv3		Zp

		e2u
�
� ln

�
1� b2

�� b2

2
; ð102cÞ

jðxÞ denotes the digamma function, logarithmic derivative of
GðxÞ and a ¼ 1

137:036 denotes the fine structure constant.
Relativistic extensions of these expressions feature simi-

larly but are not identical. For instance, half of Bethe rela-
tivistic correction arises from distant interactions and one-half
stems from close ones. Bohr and Bloch relativistic modifica-
tions to distant collisions yield back Bethe's i.e.
�lnð1� b2Þ � b2=2.

Moreover Bethe's relativistic corrections to close in-
teractions apply only within the first Born approximation
while similar Bohr and Bloch contributions are not restricted
in the same way which leads to a confusing confrontation.
Noticing that these relativistic extensions amount only to �7%
for b ¼ 0.5, thus we neglect them in the sequel.

Table 5

Jd and F(V) data.

Condition V Jd F(V)

0.5 0.22196 0.327

1 0.29387 0.371

Ne: Z ¼ 10 1.5 0.27711 0.366

d ¼ 0.427 9 0.05799 0.179

9.5 0.05412 0.173

10 0.05064 0.167

0.5 0.21793 0.215

1 0.25206 0.257

Ca: Z ¼ 20 1.5 0.23594 0.267

d ¼ 0.880 9 0.058472 0.170

9.5 0.054863 0.166

10 0.051600 0.162

0.5 0.20626 0.205

1 0.24476 0.254

Hg: Z ¼ 80 1.5 0.23434 0.271

d ¼ 0.620 4 0.14005 0.251

4.5 0.12717 0.244

5 0.11601 0.236

0.5 0.19718 0.178

1 0.2337 0.231

Th: Z ¼ 90 1.5 0.22616 0.252

d ¼ 0.980 4 0.13992 0.246

4.5 0.12757 0.240

5 0.11678 0.234
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Nonrelativistic expressions for LBethe, LBloch, and LBohr are
given on Fig. 17 in terms of as a function of lnðbÞ at
hu ¼ 100 eV for Zp ¼ 1, 10, and 92. Let us remark that
LBloch ¼ LBethe for Zp ¼ 1 and also that LBloch � LBohr from
b / 0.5 while LBloch/LBohr when b / 0.05.

Despite that LBethe ¼ LBohr at Zp ¼ 10, when b / 0.13,
both quantities differ by 5% from LBloch. This highlights a case
when a classical result gives back a first-order quantum-
mechanical one. Nonetheless both L values turn negative for
small b’s demonstrating their non-validity for low velocities.

Now it is appropriate to comment on the physics motivating
the distinct L behaviors on Fig. 17. Let us first notice that the
first Born approximation documents any lowest-order quan-
tum-mechanical one. It is used by Bethe for any kind of col-
lisions while Bloch restricts the use of a first order
approximation to distant collisions taken in a dipole approxi-
mation. In the non-relativistic case, Bloch considers close
interactions with the exact asymptotic's of the Coulomb scat-
tering amplitude altogether with an adequate form of the
electron wave packet structure in the c.m. frame allowing a
finite and lateral extent of the projectile scattering center in
given frame.

Non-relativistic Bloch comes close to non-relativistic Bethe
when

		Zp		a=b⩽1ð⩾1Þ from Born (classical) validity. That

requirement features the valid approach to close-collision
slowing down. It is more difficult to pinpoint distant in-
teractions because the dipole approximation interferes with
Born's.

Nonetheless, as Bloch and Bohr use same assumptions for
distant collisions while Bloch's treatment retrieves Bohr's even
at relativistic energies, any discrepancies between the three
approaches should imply close and/or intermediate
interactions.

A straightforward contention of this view, due to Bohr, runs
as follows: we are allowed to introduce an intermediate impact
parameter b1 so that collisions fulfilling b > b1 can be seen as
electromagnetic excitations of charged harmonic oscillators in
a homogeneous electric field arising from the passing pro-
jectile, while collisions with b < b1 can be seen as free-
electron scattering in momentum frame center.

When b < b1, Bohr exact expression is retrieved through
b1 ¼ Zpe

2=mv2g with v, relative projectile-electron velocity
and g ¼ (1 � b2) � 1/2 while restricting to “distant-collision”
energy loss.

This is achieved by restricting the impact parameter so that
the energy transfer is given as 1/b2.

However, when the electron de Broglie wavelength
>Zpe

2=mvg in c.m. frame, it is expected to replace the clas-
sical minimum impact parameter which accounts for the
elimination of close collisions energy transfer with electron
wave packet smearing.

As a result, when Zpa=b< 1, quantum-mechanical b1's lead
to Bethe expression while Zpa/b yields back Bohr one. Those
conditions feature accurately the validity of first Born and
classical approximations, respectively.

3.3. Low velocity stopping

Here, one focuses attention on the slow velocity regime,
where the projectile is still transferring a significant amount of
energy to the target inner shells. A typical example is afforded
by proton beams with initial energy (at pellet entrance) in the
MeV range. Then, the range of present concern lies around E/
A ~ 100 keV, where E denotes the projectile kinetic energy and
A, its atomic mass.

Keeping constant effective charge Zp, present consider-
ations are easily adapted to heavy ion driven fusion, because
recent numerical simulations show an enhanced energy
transfer between projectiles and target.

Table 6

Relative importance of Bloch and Barkas terms for cold-gas and plasma target. The target has a linear density of free electron nel ¼ 1.5 � 1019 cm�2 [D. Gard�es,

G. Maynard et al., Phys. Rev. 146, 5101 (1992)].

ZpV0

Vp
Bethe L0 Barkas Bloch

Ion E (MeV/amu) Gas Plasmas Gas Plasmas Gas Plasmas Gas Plasmas

C4þ 2 0.56 0.62 5.63 12.48 0.08 0 �0.3 �0.35

S7þ 1 1.75 2.07 4.94 11.79 0.35 0 �1.16 �1.32

1.5 1.43 1.69 5.34 12.2 0.23 0 �0.98 �1.13

2 1.34 1.47 5.63 12.48 0.18 0 �0.85 �1.00

Br6þ 0.93 2.79 3.45 4.86 11.72 0.64 0 �1.61 �1.82

Fig. 17. Nonrelativistic forms of Eqs. (102a), (102b) and (102c). Note that

LBethe is independent of Zp and that LBohr ¼ LBloch for Zp ¼ 92, LBethe ¼ LBohr
for Zp ¼ 1 and that LBloch / LBohr at small velocities and LBloch / LBethe at

large velocities for Zp ¼ 10 (after Ref. [39]). Reproduced from S.P. Ahlen, Rev.

Mod. Phys 52, 121 (1980) with the permission of AIP Publishing.
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To investigate stopping at low velocity, we have to extend
the conceptual framework beyond the standard expression (37).

More specifically, it remains to pay a due attention to pro-
jectile energy range (M ¼ Amp, mp being the proton mass)

105 ½eV�
A

� 1

2
MV2

p � 5:15
M

me

ZT ½eV� ð103Þ

for which stopping is expected to advocate a frictionlike
expression

�dE

dx
� a
�
Zpe

2
�2
Vp ð104Þ

with a Brownianlike constant a to be fixed in the sequel.
Approximation (104) is fulfilled by RPA free electrons in
agreement with L � aV3

p ([1]). Then, the stopping process is
viewed as a kind of Brownian motion with the projectile,
assaulted by many tiny particles (the stopping electrons). Up
to now, we advocated a Zp≪ZT regime, which is to be con-
trasted to the case ZpyZT considered in the literature (e.g. for
instance the so-called LSS model [45,46] through a quasi-
molecular approach.

Eq. (104) may be derived in the impulse approximation
(IA) when the Born validity criterion,

Zpe
2

ZV0

≪1: ð105Þ

V0 ¼ average bound target electron velocity, is fulfilled (by
close collisions, for instance). Then, the stopping contribution
of bound subshell Ið≡n; lÞ is explained as

� 1

4pnT



dE

dx

�
nl

¼
�
Zpe

2
�2

meV2
p

Z∞
0

dE0
Z∞
E

ZVp

dq

q

dfnlðq;E0Þ
dE0 ð106Þ

in terms of the generalized oscillator strength (GOS) density
dfnl
dE labelled by excitation energies E and the impulse Zq
transferred from projectile to target electron. nT.

Within the impulse approximation (IA), dfn/dE is expressed
in terms of the p-space target wave functions cnlðpÞ, retaining
their unperturbed labelling (n, l ). After several transformation,
Eq. (106) may be given the form (104), with

a¼ me

3EI

〈1
p
〉
nl

ð107Þ

showing that, the best accuracy can be expected for eigen-
quantities of the stopping electron. However, the most serious
drawback is the insufficiently accurate EI for the highest
subshells which provide the largest stopping. Generally
speaking, weakly bound electrons seem more efficient stop-
pers than more tightly bound ones. The IA results compare
pretty well (Fig. 18) with the Andersen-Ziegler compilation
[47] for low velocity stopping of protons in cold argon gas.

The extrapolations from Bethe formula stand down by more
than a factor of 2.

4. Low velocity ion stopping in binary ionic mixtures
(BIM) [48]

A specific interest devoted to low velocity ion slowing
down (LVISD) in dense multicomponent plasmas has recently
emerged in conjunction with a few other topics featuring
concerns for inertially confined fusion (ICF) operated through
super intense and femtosecond laser produced ion beams. As
expected, this trend got initiated with the routine production of
proton beams with a kinetic energy up to 100 MeV and also
highlighting a very small transverse emittance. An intense
activity is thus presently deployed to extending the proton
performances up to fully ionized carbon ions (C6þ) and
heavier ions whenever possible. Moreover, the quantitative
control of the standard fusion reaction based on the deuterium-
tritium (DT) fuel sustained by the resulting a particles (He2þ)
requires a thorough investigation of an a LVSID near the end
of range.

This explains that we pay a certain attention to proton and a
stopping in dense DT-mixtures with a variable relative
composition with density range 1023 < ne ½cm�3�< 1026 and
thermal velocity range 10 < T [eV] < 20 000. An adequate and
fine tuning out of the relevant LVISD is thus expected for the
beam-target interaction involved in the fast ignition scenario
(FIS).

It is also worthwhile to mention the strong relevance of
LVISD to many astrophysics issues, and also in the production
through heavy ion beams stopped near Bragg peak in thin
targets, of the so-called warm dense matter (WDM) i.e
strongly coupled plasmas with a density close to the solid one
and a few eV temperature [49].

Fig. 18. Impulse approximation (IA) results compared with experimental

values and Bethe formula for stopping by neutral argon. Pergamon refers to

Ref. [47].
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4.1. Basic formulation

Basically, LVISD features canonically as

�dE

dx
¼ AVp; ð108Þ

for a typical energy/nucleon <100 keV/nucleon.
The pertaining dielectronic picture includes partially

degenerate electrons and classical ion species (Zi, Mi) as well.
The ion component highlights a weakly coupled BIM. Then, it
appears appropriate to introduce the overall dielectronic
function

εðk;uÞ ¼ 1þ 1

k2

�
W



W

k

�
þW


 ffiffiffiffiffiffi
M1

p W

k

�
þW


 ffiffiffiffiffiffi
M2

p W

k

��
ð109Þ

with the usual Fried-Conte dispersion function W (Im z � 0)

WðzÞ ¼ 1ffiffiffiffiffiffi
2p

p lim
v/0þ

Z∞
�∞

dx
xe�x2=2

x� z� in
ð110Þ

and XðzÞ ¼ ReWðzÞ; YðzÞ ¼ ImWðzÞ:
Extending the standard one-component stopping expression

�


dE

dx

�
¼ Z2ND

ð2pÞ2
Zk

∞

dk$k3
Zþ1

�1

dm
mY
�
mVp

��
k2 þX

�
mVp

��2 þ Y2
�
mVp

�
ð111Þ

with Z ¼ Zeff=ND, where Zeff denotes the projectile effective
charge at velocity Vp, ND ¼ nel

3
D in terms of target electron

density and corresponding Debye length. In the sequel, Vp will
be scaled by Vthe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=me

p
, thermal electron velocity with

T, thermalized target temperature. In Eq. (111) we select kmax

by considering quantum diffraction effects when kBT⩾1Ry so
that

kmax ¼min

24m
�
V2
p þV2

the

�
Zeff

;
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
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q
Z

35
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ffiffiffiffiffiffiffiffiffi
2ND

p ac
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

pþ2
q �

;

ð112Þ

where Vp is now dimensionless on the second line on the right-
hand-side, a ¼ 1/137.036 is the fine structure constant, and c,
light velocity.

The specification of Eq. (111) to BIM stopping requires the
relative ion concentration of species 1, i.e.

a¼ N1

N1 þN2

ð113Þ

in terms of ion number Ni with i ¼ 1, 2, in target plasma, so
that BIM densities

n1 ¼ nea

Z
; n2 ¼ neð1� aÞ

Z
; Z ¼ Z1aþ Z2ð1� aÞ ð114Þ

are straightforwardly expressed in terms of electron density ne.
Then, we can estimate the stopping contributions of every

target component: electron 0, ion 1 and ion 2 as follows:

dE0

dx
¼ C0

ZKmax0

0

dk$k3
Zþ1

�1

dm
mYðmvÞ
Dðk;mvÞ; ð115aÞ

dE1

dx
¼ C1

Zkmax1

0

dk$k3
Zþ1

�1

dm
mYð ffiffiffiffiffiffiffiffiffiffiffi

M1mv
p Þ

DðK;mvÞ ; ð115bÞ

Fig. 19. Proton stopping in Hþ�Dþ BIM in terms of Vp/Vthe,ne ¼ 1023 cm�3, a

denotes the proton concentration in BIMT¼… 10 eV,ee 100 eV,dd 1000 eV.

Red pertains to e-stopping, green to Hþ-stopping and blue to

Dþ-stopping. Reproduced from B. Tashev, et al., Phys. Plasmas 15, 102701 (2008)

with the permission of AIP Publishing.
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dE2
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and
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Expressions (115) are in kBT=lD, with the Debye screening
length lD respectively adapted to electron 0, ion 1 and ion 2.
Vp is in Vthe.

Fig. 20. Alpha particle stopping in a Tokamak-like D-T BIM with

ne ¼ 1014 cm�3 and T ¼ 10 keV. a denotes Dþ-concentration. Red refers to e-

stopping, green to Dþ-stopping and blue to Tþ-stopping. Reproduced from B.

Tashev et al., Phys. Plasmas 15, 102701 (2008) with the permission of AIP

Publishing.

Fig. 21. Proton stopping in a DT-mixture. ne¼ 1025 cm�3, T¼… 0.5 keV,ee
1 keV, d d 2 keV. Red refers to e-stopping, green to Dþ-stopping and blue to

Tþ-stopping. Reproduced from B. Tashev et al., Phys. Plasmas 15, 102701

(2008) with the permission of AIP Publishing.
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4.2. Main stopping trends

4.2.1. Basic feature
We detail now the LVISD specificities in the DT-BIM in the

velocity range Vthi <Vp <Vthe. Stressing the usual target pa-
rameters, density, temperature, and the charge and mass (Mi; Zi)
of ion species i, we notice that a pertinent bookkeeping of
stopping modes has to be performed for a projectile stopping
power measured in kBT=lD, in terms of the target equilibrium
temperature T and screening Debye length lD, respectively,
featuring the electron contribution (e-stopping) and the ion
contribution i ¼ 1, 2. Moreover, we shall frequently reduce the
projectile effective charge Zeff to that of the proton, because the
kmax [Eq. (117)] Zeff dependence remains very weak, so the
usual quadratic dependence Z2

eff of the stopping patterns shows
up as fulfilled in the whole space parameter of present interest.

We first focus on deuterium-tritium (DT) BIM of thermo-
nuclear fusion interest, with a strong emphasis on superdense
DT target considered for the so-called fast ignition scenario
(FIS) in inertial fusion energy (IFE).

Stressing the stopping of the thermonuclear produced a
particles, we remark that as soon as the target temperature T
lies above 1 keV, the corresponding a particles velocity Vp

should remain below the target thermal electron velocity Vthe.
So the crucial self-sustained target ignition through He2þ

stopping in DT-targets is strongly dependent on LVISD
mechanisms considered here.

On the other hand, proton stopping remains a major issue
for assessing the feasibility of FIS/IFE in view of the recently
advocated potential of very intense proton beams produced in
the irradiation of thin solid foils by PW-lasers. The given

proton beams show a very low transverse emittance, which are
easier to handle than the relativistic electron beams (REB)
initially selected out.

The very fine tuning of the tiny hot spots produced in the
bombardment of DT targets, demands that the proton end of
range be carefully monitored through LVISD.

Denoting a as the relative proportion of ion species A in the
so-called AB-BIM and expliciting in Fig. 19 the a-dependence
of the stopping profiles (SP) in terms of dimensionless pro-
jectile velocity 0⩽Vp=Vthe⩽1, for proton projectiles losing their
energy in a HþeDþ BIM at solid density ne ¼ 1023 cm�3 and
T ¼ 10e1000 eV, BIM stopping appears essentially restricted
to the narrow range 0⩽Vp=Vthe⩽0:2.

Blue qualifies projectile stopping through the Dþ-ionic
component, green pertains to the target Hþ-component, and
red highlights the usual e-stopping treated classically in view
of T⩾10 eV> TF ¼ 7:85 eV. In this Vp range, e-stopping re-
mains secondary to i-stopping.

Lower T-values would emphasize Zs0 effects due to
electron partial degeneracy through T-dependent electron-ion
and electron-electron effective interactions.

The code of colors runs as follows: Black for blue lines,
dark gray for red lines, and light gray for green lines. The most
conspicuous feature highlighted by the a-dependence of
Fig. 19 is obviously the quasi symmetry a⇔1� a due to
Z1 ¼ Z2 and M2/M1 ¼ 1.5.

Such a behavior is also fulfilled by a D-T BIM exposed to a
He2þ beam at a much lower density ne ¼ 1014 cm�3, quali-
fying an MFE-like plasma at T ¼ 10 keV. The given quasi
symmetry is also updated in both situations by the nearly equal
ion stopping contributions at a ¼ 0.5.

Fig. 22. Alpha particle projectile in a Deuterium-Tritium BIM with ne ¼ 1023 cm�3 and different temperatures with Dþ relative proportion. (a) a ¼ 0.001, (b)

a ¼ 0.1, (c) a ¼ 0.5 and (d) a ¼ 0.9. Red refers to electron stopping, green to Dþ-stopping while blue denotes Tþ-stopping; Dots refer to T ¼ 10 eV, other lines

with the same color denote T ¼ 100 eV, 2 keV and 5 keV from top to bottom. Reproduced from B. Tashev, et al., Phys. Plasmas 15, 102701 (2008) with the

permission of AIP Publishing.
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Let us remark that the sum of the highest ordinates of the
ion SP keeps a value constant when a varies, at fixed tem-
perature. All those trends are shared by proton stopping in a
superdense mixture (Fig. 22 of FIS concern with
ne ¼ 1025 cm�3 and T ¼ 0.5 � 2 keV. It is also a remarkable
fact that target ion SP peaks always appear at very low Vp/
Vthe < 0.05, in the three cases (Figs. 19 and 22) herein
considered.

4.2.2. T-dependence
FIS ignition performances strongly rely on the the com-

pressed DT-fuel initial temperature. In this regard we show on
Figs. 23 and 24 the stopping profiles (SP) on a logarithmic
scale for alpha particle slowing down at 1023 cm�3 and
1026 cm�3, respectively.

With this change of scale, the e-stopping does not appear
negligible and fine structures at the intersection of e-stopping
and i-stopping are clearly seen, a denotes deuterium relative
concentration and the quasi-symmetric features of target ions
SP look even enhanced contrasted to their linear counterparts.

4.2.3. Critical velocity Vp,crit

Above displayed stopping data make it clear that target e-
stopping contribution matches the sum of remaining i-pro-
jectile stopping contributions for a critical projectile velocity
Vp,crit such that Vp,crit/Vthe ~ 0.15 � 0.2, when the given BIM
are not too asymmetric in charge and mass.

This process is illustrated in Fig. 24 through proton stop-
ping down in a Hþ � He2þ BIM with 1012⩽ne ½cm�3�⩽1018
and 0⩽T ½eV�⩽103. Fig. 24(a) highlights a rather flat three-
dimensional snapshot for a a ¼ 0.5 BIM vindicating
0:1⩽Vp;crit=Vthe⩽0:13. However, separate variations in T
[Fig. 24(b)] and density [Fig. 24(c)] document a strong a-
dependence for Vp,crit. It is a remarkable fact that these Vp,crit

estimates fall in quite a close agreement with those derived
from an independent Fokker-Planck analysis, relying on the
ratio of projectile kinetic energy to that of target electrons.

Thus we get

1
2
MrV

2
p;crit

1
2
meV

2
the

¼ C2=3

1
2
meV

2
the

ð118Þ

where

C ¼ 3p1=2

4



Mp

me

�1=2
Mp

M
Z

in terms of the BIM quantities Z ¼ aZ1 þ ð1� aÞZ2 and
M ¼ aM1 þ ð1� aÞM2. In the present case, the above ratio
becomes

Vp;crit

Vthe

y0:12

in rather good agreement to that displayed on the Fig. 24(a)
vertical scale. A similar quantitative matching between the
present dielectric approach and the collisional one of current

use in Tokamak physics can be retrieved for alpha particle
stopping, as well.

4.2.4. Straggling
Within the rather high temperature range of present interest,

one can use the high-T straggling approximation,

U2 ¼ 2kBTS ð119Þ

where S is the total stopping including electron and ion con-
tributions. Fig. 25 illustrates the case of proton projectiles
stopped in a DT-equimixture (a ¼ 0.5) with ne ¼ 1018 cm�3

and T ¼ 500 eV. It unambiguously contrasts the usual bell-
shaped curve featuring e-stopping at any Vp, to the highly
peaked BIM contribution restricted to Vp/Vthe � 0.2.

Fig. 23. He2þ projectile in a deuterium-tritium mixture where ne ¼ 1026 cm�3

and T ¼ … 1 keV, e e 2 keV, d d 5 keV with a deuterium relative con-

centration. Color attribution are the same as in Fig. 22. Reproduced from B.

Tashev et al., Phys. Plasmas 15, 102701 (2008) with the permission of AIP

Publishing.
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5. Conclusion and outlook

The present review of ion stopping in dense plasmas ap-
pears mostly geared toward theoretical and simulation fea-
tures. However, corresponding experimental aspects already

previously referred to [2] demand also a timely updating
motivated by very recent and significantly promising
developments.

In this regard, the potentialities afforded by intense ion
beams to emulate high energy density physics have just been
presented by Sharkov et al. [54] which details, for instance, the
specific ion-plasma target designs such as HIHEX and PRIOR
envisioned for isochoric plasma heating and proton
radiography.

Pertaining facilities include FAIR at GSI e Darmstadt
(presently in construction) as well the HIAF combination in
China headed by IMP-Lanzhou.

Typically, these setups would secure intense and highly
charged (Z ~ 33) uranium beams with up to 4.4 � 109 parti-
cles/bunch in 100e125 ns.

Then, the given and possible beametarget configurations
appear very well suited to document heating of warm dense
matter (WDM) plasmas with T ~ 1 e 10 eV in a volume
� mm3 much larger than the biggest ones affordable on the
most performing laser beam lines (LCLS at SLAC for instance)
while featuring only small density gradients at plasma edges.

Specific energy deposit is thus expected up to 100 MJ/g
enabling the investigation of hot plasma targets with T up to
1 keV.

Other significant highlights concern the very first and ac-
curate determination of light ion (proton and a particle)
stopping in the vicinity of the Bragg peak (Vp � Vthe) by
Frenje et al. [55] using SiO2 thin capsules filled with D-3HeHe
gas in same proportion. Strength and location of the Bragg
peak are demonstrated strongly dependent on density
(~1023 cm�3) and temperature (T ~ 0.4 � 0.5 keV) variations
in plasmas of current inertial fusion interest.

The same MIT-LLE team headed by Petrasso [56] in
collaboration with others also carefully investigated proton
stopping in WDM targets with T ~ 32 eVat moderate Coulomb
coupling (0.3) and moderate electron degeneracy (T/TF ~ 2).

In this regard, it is worthwhile to notice that such in-
vestigations open the door to a systematic inquiry of nonrel-
ativistic ion stopping in arbitrary degenerate electron targets
[1,57]. Moreover, an intriguing and promising possibility for
measuring stopping and straggling of very light ions such as
protons and a particles got very recently implemented [58]
through the simultaneous use of the same high power laser
to ignite a target plasma in a gas jet and also to produce the
interacting ion beam out of the usual TNSA (target normal
sheath acceleration) mechanism.

For that purpose, two arms on the setups ELFIE (Ecole
Polytechnique) and TITAN (Lawrence Livermore) have been
respectively selected to produce a short TNSA pulse (10 J, 400
fs) and a long pulse (60 J, 500 ps). The latter one being
devided in two-halves enabling target firing and also a probing
beam (~30 mJ, 400 fs).

This novel metrological approach could allow to probe very
conveniently different target plasmas (H, He, N, Ar, Xe …) at
high temperature (100 < Te [eV] < 1000) with a target density
ne ~ 1020 cm�3 while using a well energyecalibrated
impacting ion beam through a carefully designed velocity

Fig. 24. Critical proton velocity Vp,crit in a ¼ 0.5 HþeHe2þ BIM. (a) 3D view

in terms of ne and T, (b) cross-section at ne ¼ 1018 cm�3 for a ¼ 0 and 0.5, (c)

cross-section at T ¼ 200 eV for a ¼ 0.1 and 0.5. Reproduced from B. Tashev

et al., Phys. Plasmas 15, 102701 (2008) with the permission of AIP

Publishing.

Fig. 25. High temperature straggling for proton projectiles in a DT-BIM with

a ¼ 0.5, ne ¼ 1018 cm�3 and T ¼ 500 eV. Reproduced from B. Tashev et al.,

Phys. Plasmas 15, 102701 (2008) with the permission of AIP Publishing.
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selector out of the initially and laser produced broadband
beam. Then, the corresponding ion-plasma interactions stand
at variance to the former accelerator-based ones [2,3,50-53]
restricted to moderate temperatures (1 < Te [eV] < 10) [2,3].
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